Bound on eigenvalues of sum of matrices

Dependencies:

  1. Eigenvalues and Eigenvectors
  2. Eigenpair of affine transformation
  3. Positive definite iff eigenvalues are positive
  4. All eigenvalues of a hermitian matrix are real
  5. Identity matrix
  6. Sum of positive definite matrices is positive definite

Let $A$ and $B$ be real $n$ by $n$ symmetric matrices. Then $A$, $B$ and $A+B$ have real eigenvalues.

Then \[ \lambda^- + \mu^- \le \gamma^- \le \gamma^+ \le \lambda^+ + \mu^+ \]

Proof

Let $\lambda(X)$ be the set of eigenvalues of matrix $X$.

\begin{align} & \lambda(A) \in [\lambda^-, \lambda^+] \wedge \lambda(B) \in [\mu^-, \mu^+] \\ &\Rightarrow \lambda(A-\lambda^-I) \subseteq [0, \lambda^+ - \lambda^-] \wedge \lambda(B-\mu^-I) \subseteq [0, \mu^+ - \mu^-] \tag{affine transformation} \\ &\Rightarrow (A-\lambda^-I) \textrm{ is PSD } \wedge (B-\mu^-I) \textrm{ is PSD} \\ &\Rightarrow (A-\lambda^-I) + (B - \mu^-I) \textrm{ is PSD} \\ &\Rightarrow (A + B) - (\lambda^- + \mu^-)I \textrm{ is PSD} \\ &\Rightarrow \lambda((A + B) - (\lambda^- + \mu^-)I) \subseteq [0, \infty) \\ &\Rightarrow \lambda(A + B) \subseteq [\lambda^- + \mu^-, \infty) \end{align}

\begin{align} & \lambda(A) \in [\lambda^-, \lambda^+] \wedge \lambda(B) \in [\mu^-, \mu^+] \\ &\Rightarrow \lambda(A-\lambda^+I) \subseteq [\lambda^- - \lambda^+, 0] \wedge \lambda(B-\mu^+I) \subseteq [\mu^- - \mu^+, 0] \tag{affine transformation} \\ &\Rightarrow (A-\lambda^+I) \textrm{ is NSD } \wedge (B-\mu^-I) \textrm{ is NSD} \\ &\Rightarrow (A-\lambda^+I) + (B - \mu^+I) \textrm{ is NSD} \\ &\Rightarrow (A + B) - (\lambda^+ + \mu^+)I \textrm{ is NSD} \\ &\Rightarrow \lambda((A + B) - (\lambda^+ + \mu^+)I) \subseteq (-\infty, 0] \\ &\Rightarrow \lambda(A + B) \subseteq (-\infty, \lambda^+ + \mu^+] \end{align}

Therefore, $\lambda(A+B) \subseteq [\lambda^- + \mu^-, \lambda^+ + \mu^+]$.

Dependency for: None

Info:

Transitive dependencies:

  1. /linear-algebra/vector-spaces/condition-for-subspace
  2. /linear-algebra/matrices/gauss-jordan-algo
  3. /complex-numbers/conjugate-product-abs
  4. /complex-numbers/conjugation-is-homomorphic
  5. /complex-numbers/complex-numbers
  6. /linear-algebra/eigenvectors/cayley-hamilton-theorem
  7. /misc/fundamental-theorem-of-algebra
  8. /sets-and-relations/composition-of-bijections-is-a-bijection
  9. /sets-and-relations/equivalence-relation
  10. Group
  11. Ring
  12. Polynomial
  13. Vector
  14. Dot-product of vectors
  15. Integral Domain
  16. Comparing coefficients of a polynomial with disjoint variables
  17. 0x = 0 = x0
  18. Field
  19. Vector Space
  20. Linear independence
  21. Span
  22. Incrementing a linearly independent set
  23. Linear transformation
  24. Composition of linear transformations
  25. Vector space isomorphism is an equivalence relation
  26. Inner product space
  27. Inner product is anti-linear in second argument
  28. Orthogonality and orthonormality
  29. Gram-Schmidt Process
  30. A set of mutually orthogonal vectors is linearly independent
  31. Symmetric operator
  32. A field is an integral domain
  33. Semiring
  34. Matrix
  35. Stacking
  36. System of linear equations
  37. Product of stacked matrices
  38. Transpose of stacked matrix
  39. Matrix multiplication is associative
  40. Positive definite
  41. Sum of positive definite matrices is positive definite
  42. Reduced Row Echelon Form (RREF)
  43. Conjugate Transpose and Hermitian
  44. Transpose of product
  45. Conjugation of matrices is homomorphic
  46. Submatrix
  47. Determinant
  48. Determinant of upper triangular matrix
  49. Swapping last 2 rows of a matrix negates its determinant
  50. Trace of a matrix
  51. Matrices over a field form a vector space
  52. Row space
  53. Matrices form an inner-product space
  54. Elementary row operation
  55. Determinant after elementary row operation
  56. Every elementary row operation has a unique inverse
  57. Row equivalence of matrices
  58. Row equivalent matrices have the same row space
  59. RREF is unique
  60. Identity matrix
  61. Inverse of a matrix
  62. Inverse of product
  63. Elementary row operation is matrix pre-multiplication
  64. Row equivalence matrix
  65. Equations with row equivalent matrices have the same solution set
  66. Basis of a vector space
  67. Linearly independent set is not bigger than a span
  68. Homogeneous linear equations with more variables than equations
  69. Rank of a homogenous system of linear equations
  70. Rank of a matrix
  71. A set of dim(V) linearly independent vectors is a basis
  72. Basis of F^n
  73. Matrix of linear transformation
  74. Coordinatization over a basis
  75. Basis changer
  76. Basis change is an isomorphic linear transformation
  77. Vector spaces are isomorphic iff their dimensions are same
  78. Canonical decomposition of a linear transformation
  79. Eigenvalues and Eigenvectors
  80. All eigenvalues of a hermitian matrix are real
  81. All eigenvalues of a symmetric operator are real
  82. Real matrix with real eigenvalues has real eigenvectors
  83. Diagonalization
  84. Symmetric operator iff hermitian
  85. Linearly independent set can be expanded into a basis
  86. Full-rank square matrix in RREF is the identity matrix
  87. A matrix is full-rank iff its determinant is non-0
  88. Characteristic polynomial of a matrix
  89. Degree and monicness of a characteristic polynomial
  90. Full-rank square matrix is invertible
  91. AB = I implies BA = I
  92. Determinant of product is product of determinants
  93. Every complex matrix has an eigenvalue
  94. Symmetric operator on V has a basis of orthonormal eigenvectors
  95. Orthogonal matrix
  96. Orthogonally diagonalizable iff hermitian
  97. Bounding matrix quadratic form using eigenvalues
  98. Positive definite iff eigenvalues are positive
  99. Eigenpair of affine transformation