Matrices over a field form a vector space

Dependencies:

  1. Matrix
  2. Vector Space

Let $F$ be a field. Then $\mathbb{M}_{m, n}(F)$ is a vector space on $F$.

Proof

Therefore, $\mathbb{M}_{m, n}(F)$ is an abelian group.

Therefore, $\mathbb{M}_{m, n}(F)$ is a vector space.

Dependency for:

  1. Basis of F^n
  2. Matrices form an inner-product space
  3. Row space

Info:

Transitive dependencies:

  1. Group
  2. Ring
  3. Field
  4. Vector Space
  5. Semiring
  6. Matrix