Transpose of product
Dependencies:
Let $R$ be a commutative semiring. Let $A$ and $B$ be matrices on $R$. Then $(AB)^T = B^TA^T$.
Proof
\begin{align} & (AB)^T[i, j] \\ &= (AB)[j, i] \\ &= \sum_k A[j, k] B[k, i] \\ &= \sum_k A^T[k, j] B^T[i, k] \\ &= \sum_k B^T[i, k] A^T[k, j] \tag{$R$ is commutative semiring} \\ &= (B^TA^T)[i, j] \end{align}
Therefore, $(AB)^T = B^TA^T$.
Dependency for:
- Matrix of orthonormal basis change
- Symmetric operator iff hermitian
- Orthogonally diagonalizable iff hermitian
- A is diagonalizable iff there are n linearly independent eigenvectors
- All eigenvalues of a hermitian matrix are real
- Matrices form an inner-product space
- Bounding matrix quadratic form using eigenvalues
Info:
- Depth: 3
- Number of transitive dependencies: 4