Product of stacked matrices
Dependencies:
Let $A_{i, j}$ be an $m_i$ by $p_j$ matrix for $1 \le i \le m$ and $1 \le j \le p$. Let $B_{i, j}$ be an $p_i$ by $n_j$ matrix for $1 \le i \le p$ and $1 \le j \le n$.
Then $\operatorname{stack}(A)\operatorname{stack}(B) = \operatorname{stack}(C)$, where $C_{i, j}$ is an $m_i$ by $n_j$ matrix for $1 \le i \le m$ and $1 \le j \le n$ and \[ C_{i, j} = \sum_{k=1}^p A_{i, k}B_{k, j} \]
Proof
Lemma 1
\[ M \begin{bmatrix} A_1 & A_2 & \cdots & A_n \end{bmatrix} = \begin{bmatrix} MA_1 & MA_2 & \cdots & MA_n \end{bmatrix} \]
(Proof yet to be written)
Lemma 2
\[ \begin{bmatrix} A_1 \\ A_2 \\ \vdots \\ A_n \end{bmatrix} M = \begin{bmatrix} A_1M \\ A_2M \\ \vdots \\ A_nM \end{bmatrix} \]
(Proof yet to be written)
Lemma 3
\[ \begin{bmatrix} A_1 & A_2 & \cdots & A_n \end{bmatrix} \begin{bmatrix} B_1 \\ B_2 \\ \vdots \\ B_n \end{bmatrix} = \sum_{i=1}^n A_iB_i \]
(Proof yet to be written)
Main result
Let \[ A_i = \begin{bmatrix} A_{i, 1} & A_{i, 2} & \cdots & A_{i, p} \end{bmatrix} \] \[ B_j = \begin{bmatrix} B_{1, j} \\ B_{2, j} \\ \vdots \\ B_{p, j} \end{bmatrix} \]
\begin{align} & \operatorname{stack}(A)\operatorname{stack}(B) \\ &= \begin{bmatrix} A_1 \\ A_2 \\ \vdots \\ A_m \end{bmatrix} \begin{bmatrix} B_1 & B_2 & \cdots & B_n \end{bmatrix} \\ &= \begin{bmatrix} A_1 \begin{bmatrix} B_1 & B_2 & \cdots & B_n \end{bmatrix} \\ A_2 \begin{bmatrix} B_1 & B_2 & \cdots & B_n \end{bmatrix} \\ \vdots \\ A_m \begin{bmatrix} B_1 & B_2 & \cdots & B_n \end{bmatrix} \end{bmatrix} \tag{by lemma 2} \\ &= \begin{bmatrix} \begin{bmatrix} A_1B_1 & A_1B_2 & \cdots & A_1B_n \end{bmatrix} \\ \begin{bmatrix} A_2B_1 & A_2B_2 & \cdots & A_2B_n \end{bmatrix} \\ \vdots \\ \begin{bmatrix} A_mB_1 & A_mB_2 & \cdots & A_mB_n \end{bmatrix} \end{bmatrix} \tag{by lemma 1} \\ &= \begin{bmatrix} A_1B_1 & A_1B_2 & \cdots & A_1B_n \\ A_2B_1 & A_2B_2 & \cdots & A_2B_n \\ \vdots & \vdots & \ddots & \vdots \\ A_mB_1 & A_mB_2 & \cdots & A_mB_n \end{bmatrix} \end{align}
\begin{align} & A_iB_j \\ &= \begin{bmatrix} A_{i, 1} & A_{i, 2} & \cdots & A_{i, p} \end{bmatrix} \begin{bmatrix} B_{1, j} \\ B_{2, j} \\ \vdots \\ B_{p, j} \end{bmatrix} \\ &= \sum_{k=1}^p A_{i, k}B_{k, j} \tag{by lemma 3} \end{align}
Dependency for:
- Standard normal random vector on vector space
- Diagonalization
- RREF([A|I]) = [I|inv(A)] iff A is invertible
- Orthogonal matrix
- Equations with row equivalent matrices have the same solution set
- BP: α(1+ε)-approx solution to density-restricted config LP using α-approx algorithm for density-restricted knapsack
Info:
- Depth: 4
- Number of transitive dependencies: 5