0x = 0 = x0
Dependencies:
Let $R$ be a ring. Then $\forall x \in R, 0{\cdot}x = 0 = x{\cdot}0$.
Proof
$0x = (0+0)x = 0x + 0x$. Therefore, $0x = 0$.
$x0 = x(0+0) = x0 + x0$. Therefore, $x0 = 0$.
Dependency for:
Info:
- Depth: 2
- Number of transitive dependencies: 2