Sum of positive definite matrices is positive definite

Dependencies:

  1. Positive definite

Let $A$ and $B$ be real $n$ by $n$ matrices. Then

Proof

If $A$ and $B$ are positive definite, \[ \forall u \in \mathbb{R}^n - \{0\}, u^T(A+B)u = u^TAu + u^TBu > 0 + 0 = 0 \] If $A$ and $B$ are positive semidefinite, \[ \forall u \in \mathbb{R}^n, u^T(A+B)u = u^TAu + u^TBu \ge 0 + 0 = 0 \] If $A$ and $B$ are negative definite, \[ \forall u \in \mathbb{R}^n - \{0\}, u^T(A+B)u = u^TAu + u^TBu < 0 + 0 = 0 \] If $A$ and $B$ are negative semidefinite, \[ \forall u \in \mathbb{R}^n, u^T(A+B)u = u^TAu + u^TBu \le 0 + 0 = 0 \]

Dependency for:

  1. Bound on eigenvalues of sum of matrices

Info:

Transitive dependencies:

  1. Group
  2. Ring
  3. Semiring
  4. Matrix
  5. Positive definite