Positive definite
Dependencies:
Let $A$ be a real $n$ by $n$ matrix.
Then $A$ is positive definite (PD) iff \[ \forall u \in \mathbb{R}^n - \{0\}, u^TAu > 0 \] Then $A$ is positive semidefinite (PSD) iff \[ \forall u \in \mathbb{R}^n, u^TAu \ge 0 \] Then $A$ is negative definite (ND) iff \[ \forall u \in \mathbb{R}^n - \{0\}, u^TAu < 0 \] Then $A$ is negative semidefinite (NSD) iff \[ \forall u \in \mathbb{R}^n, u^TAu \le 0 \]
Dependency for:
- Sum of positive definite matrices is positive definite
- Positive definite iff eigenvalues are positive
Info:
- Depth: 3
- Number of transitive dependencies: 4