Conjugation of matrices is homomorphic
Dependencies:
- Matrix
- /complex-numbers/conjugation-is-homomorphic
Conjugation of matrices over complex numbers is homomorphic.
Proof
Let $A$ and $B$ be 2 $m$ by $n$ matrices.
\[ \overline{(A+B)}[i, j] = \overline{(A+B)[i, j]} = \overline{A[i, j] + B[i, j]} = \overline{A}[i, j] + \overline{B}[i, j] = (\overline{A} + \overline{B})[i, j] \]
Therefore, $\overline{A+B} = \overline{A} + \overline{B}$.
Let $c$ be a scalar and $A$ be a matrix.
\[ \overline{(cA)}[i, j] = \overline{(cA)[i, j]} = \overline{c(A[i, j])} = \overline{c}(\overline{A[i, j]}) = \overline{c}(\overline{A}[i, j]) = (\overline{c}\overline{A})[i, j] \]
Therefore, $\overline{cA} = \overline{c}\overline{A}$.
Let $A$ be an $m$ by $p$ matrix and $B$ be a $p$ by $n$ matrix.
\[ \overline{(AB)}[i, j] = \overline{(AB)[i, j]} = \overline{\sum_{k=1}^p A[i, k]B[k, j]} = \sum_{k=1}^p \overline{A[i, k]} \, \overline{B[k, j]} = \sum_{k=1}^p \overline{A}[i, k]\overline{B}[k, j] = (\overline{A} \, \overline{B})[i, j] \]
Therefore, $\overline{AB} = \overline{A}\,\overline{B}$.
Dependency for:
Info:
- Depth: 3
- Number of transitive dependencies: 5