Determinant after elementary row operation
Dependencies:
Let $A$ be an $n$ by $n$ matrix. Let $B$ be a matrix obtained by an elementary row operation on $A$. Then $|B| = r|A|$, where $r$ is a non-0 scalar. Specifically,
- $\langle i \rangle \leftarrow c\langle i \rangle$, where $c \neq 0$: $|B| = c|A|$.
- $\langle i \rangle \leftarrow \langle i \rangle + c\langle j \rangle$, where $i \neq j$: $|B| = |A|$.
- $\langle i \rangle \leftrightarrow \langle j \rangle$, where $i \neq j$: $|B| = -|A|$.
Proof
Part 1: $\langle i \rangle \leftarrow c\langle i \rangle$
It can be proved using induction that $|B| = c|A|$ for this row operation. The base case, where $A$ is a 1 by 1 matrix, is trivial to prove.
Induction hypothesis: Assume that all $n-1$ by $n-1$ matrices satisfy $|B| = c|A|$, where $B$ is a matrix obtained by an operation of the type $\langle i \rangle \leftarrow c\langle i \rangle$ on $A$.
-
Case 1: $i = n$ \begin{align} & |B| \\ &= \sum_{j=1}^n (-1)^{n+i} B[n, i] |B[-n, -i]| \\ &= \sum_{j=1}^n (-1)^{n+i} cA[n, i] |A[-n, -i]| \\ &= c \left(\sum_{j=1}^n (-1)^{n+i} A[n, i] |A[-n, -i]| \right) \tag{distributivity} \\ &= c |A| \end{align}
-
Case 2: $i \neq n$ \begin{align} & |B| \\ &= \sum_{j=1}^n (-1)^{n+i} B[n, i] |B[-n, -i]| \\ &= \sum_{j=1}^n (-1)^{n+i} A[n, i] (c|A[-n, -i]|) \tag{by induction hypothesis} \\ &= c \left(\sum_{j=1}^n (-1)^{n+i} A[n, i] |A[-n, -i]| \right) \tag{distributivity} \\ &= c |A| \end{align}
Therefore, $|B| = c|A|$ for all $n$ by induction.
Part 3: $\langle i \rangle \leftrightarrow \langle j \rangle, \textrm{ where } i \neq j$
It is already known that $|B| = -|A|$ for $\langle n-1 \rangle \leftrightarrow \langle n \rangle$
It can be proved using induction that $|B| = -|A|$ for $\langle i \rangle \leftrightarrow \langle j \rangle$, where $i \neq j$.
When $n = 2$, $\langle n-1 \rangle \leftrightarrow \langle n \rangle$ is the only row operation which swaps rows, for which we have already proved that $|B| = -|A|$.
Without loss of generality, assume that $i < j$.
Induction hypothesis: For $n \ge 3$, assume that all $n-1$ by $n-1$ matrices satisfy $|B| = -|A|$, where $B$ is a matrix obtained by the operation $\langle i \rangle \leftrightarrow \langle j \rangle$ on $A$.
-
Case 1: $i < j < n$. \begin{align} & |B| \\ &= \sum_{j=1}^n (-1)^{n+i} B[n, i] |B[-n, -i]| \\ &= \sum_{j=1}^n (-1)^{n+i} A[n, i] (-|A[-n, -i]|) \tag{by induction hypothesis} \\ &= - \left(\sum_{j=1}^n (-1)^{n+i} A[n, i] |A[-n, -i]| \right) \tag{distributivity} \\ &= -|A| \end{align}
-
Case 2: $i < j = n$
The operation $\langle i \rangle \leftrightarrow \langle n \rangle$ is the composition of these 3 operations:
- $\langle i \rangle \leftrightarrow \langle n-1 \rangle$
- $\langle n-1 \rangle \leftrightarrow \langle n \rangle$
- $\langle i \rangle \leftrightarrow \langle n-1 \rangle$
For the above operations, we have already proved that $|B| = -|A|$. Therefore, $|B| = -(-(-|A|)) = -|A|$ for $\langle i \rangle \leftrightarrow \langle n \rangle$.
Therefore, $|B| = -|A|$ for all $n$ by induction.
Part 4: $\langle i \rangle \leftarrow \langle i \rangle + c\langle j \rangle, \textrm{ where } i \neq j$
It can be proved using induction that $|B| = |A|$ for this row operation.
Base case $n=2$:
Let $A = \begin{bmatrix}a & b \\ c & d \end{bmatrix}$.
For the operation $\langle 2 \rangle \leftarrow \langle 2 \rangle + k\langle 1 \rangle$: \[ |B| = \begin{vmatrix}a & b \\ c + ka & d + kb \end{vmatrix} = (d+kb)a - (c+ka)b = ad - bc = \begin{vmatrix}a & b \\ c & d \end{vmatrix} = |A| \]
The operation $\langle 1 \rangle \leftarrow \langle 1 \rangle + k\langle 2 \rangle$ is equivalent to the composition of:
- $\langle 1 \rangle \leftrightarrow \langle 2 \rangle$
- $\langle 2 \rangle \leftarrow \langle 2 \rangle + k\langle 1 \rangle$:
- $\langle 1 \rangle \leftrightarrow \langle 2 \rangle$
The first and third operations both change the sign of the determinant. So the operation $\langle 1 \rangle \leftarrow \langle 1 \rangle + k\langle 2 \rangle$ has no effect on the determinant.
Inductive step:
For $n \ge 3$, for all $n-1$ by $n-1$ matrices, $|B| = |A|$ where $B$ is obtained from $A$ by the operation $\langle i \rangle \leftarrow \langle i \rangle + k\langle j \rangle$.
-
Case 1: $i < n \wedge j < n$ \begin{align} & |B| \\ &= \sum_{j=1}^n (-1)^{n+i} B[n, i] |B[-n, -i]| \\ &= \sum_{j=1}^n (-1)^{n+i} A[n, i] |A[-n, -i]| \tag{by induction hypothesis} \\ &= |A| \end{align}
-
Case 2: $i = n \wedge j < n$
$\langle n \rangle \leftarrow \langle n \rangle + c\langle j \rangle$ is a composition of three operations:
- $\langle k \rangle \leftrightarrow \langle n \rangle$
- $\langle k \rangle \leftarrow \langle n-1 \rangle + c\langle j \rangle$
- $\langle k \rangle \leftrightarrow \langle n \rangle$
Here $k < n$ and $k \neq j$. Such a $k$ exists since $n \ge 3$. The first and third operations change the sign of the determinant, so overall the determinant remains unchanged.
-
Case 3: $i < n \wedge j = n$
$\langle i \rangle \leftarrow \langle i \rangle + c\langle n \rangle$ is a composition of three operations:
- $\langle k \rangle \leftrightarrow \langle n \rangle$
- $\langle i \rangle \leftarrow \langle i \rangle + c\langle k \rangle$
- $\langle k \rangle \leftrightarrow \langle n \rangle$
Here $k < n$ and $k \neq i$. Such a $k$ exists since $n \ge 3$. The first and third operations change the sign of the determinant, so overall the determinant remains unchanged.
Therefore, $|B| = |A|$ for all $n$ by induction.
Dependency for:
Info:
- Depth: 6
- Number of transitive dependencies: 8