Elementary row operation
Dependencies:
Let $A$ be an $m$ by $n$ matrix.
Then the following are considered elementary row operations:
- $\langle i \rangle \leftarrow c\langle i \rangle$: Multiply the $i^{\textrm{th}}$ row by a non-zero scalar $c$.
- $\langle i \rangle \leftarrow \langle i \rangle + c\langle j \rangle$ where $i \neq j$: Add a multiple of the $j^{\textrm{th}}$ row to the $i^{\textrm{th}}$ row.
- $\langle i \rangle \leftrightarrow \langle j \rangle$: Swap the $i^{\textrm{th}}$ row with the $j^{\textrm{th}}$ row.
Dependency for:
- Row equivalence of matrices
- Every elementary row operation has a unique inverse
- Elementary row operation on stacked matrix
- Determinant after elementary row operation
Info:
- Depth: 3
- Number of transitive dependencies: 4