Linearity of expectation

Dependencies:

  1. Vector Space
  2. Probability
  3. Random variable
  4. Expected value of a random variable
  5. /measure-theory/linearity-of-lebesgue-integral

Let V be a vector space over R. Let X1,X2,,Xn be random variables in V over the probability space (Ω,F,Pr). Let b,a1,a2,,an be real numbers.

Let Y=b+i=1naiXi. Then E(Y)=b+i=1naiE(Xi)

Proof

E(Y)=ωΩY(ω)Pr(ω)=ωΩ(b+i=1naiXi(ω))Pr(ω)(linearity of Lebesgue integral)=b(ωΩPr(ω))+i=1nai(ωΩXi(ω)Pr(ω))=b+i=1naiE(Xi)

Dependency for:

  1. Cantelli's inequality
  2. Chernoff bound
  3. Cauchy-Schwarz inequality for random variables
  4. Linearity of expectation for matrices
  5. Variance of sum of independent random variables
  6. Var(aX + b) = a^2 Var(X)
  7. Var(Y) = Var(E(Y|X)) + E(Var(Y|X))
  8. Covariance of 2 random variables
  9. Variance of a random variable
  10. |mean - median| ≤ stddev
  11. Minimizer of f(z) = E(|X-z|) is median
  12. Normal distribution
  13. Markov chains: recurrent iff expected number of visits is infinite

Info:

Transitive dependencies:

  1. /analysis/topological-space
  2. /sets-and-relations/countable-set
  3. /sets-and-relations/de-morgan-laws
  4. /measure-theory/linearity-of-lebesgue-integral
  5. /measure-theory/lebesgue-integral
  6. σ-algebra
  7. Generated σ-algebra
  8. Borel algebra
  9. Measurable function
  10. Generators of the real Borel algebra (incomplete)
  11. Measure
  12. σ-algebra is closed under countable intersections
  13. Group
  14. Ring
  15. Field
  16. Vector Space
  17. Probability
  18. Random variable
  19. Expected value of a random variable