Markov chains: recurrent iff expected number of visits is infinite
Dependencies:
$\newcommand{\E}{\operatorname{E}}$ Let $X = [X_0, X_1, \ldots]$ be a markov chain with transition function $P$. For state $i$, define $R_i$ and $N_i$ as \[ R_i = \bigvee_{t=1}^{\infty} (X_t = i), \] \[ N_i = \sum_{t=0}^{\infty} \begin{cases} 1 & \textrm{ if } X_t = i \\ 0 & \textrm{ otherwise} \end{cases}. \] Intuitively, $N_i$ is the number of times we visit $i$. Then \[ \frac{1}{1 - \Pr(R_i \mid X_0 = i)} = \E(N_i \mid X_0 = i) = \sum_{t=0}^{\infty} P^{(t)}(i, i). \] This means that $i$ is recurrent iff $\E(N_i \mid X_0 = i)$ is infinite. (The sum $\sum_{t=1}^{\infty} P^{(t)}(i, i)$ is a convenient way to compute $\E(N_i \mid X_0 = i)$.)
Proof
Let $T_i$ be the first time we revisit $i$, i.e., \[ T_i = \min_{t \ge 1} (X_t = i). \] Note that $\overline{R_i} \iff T_i = \infty$ (intuitively, $R_i$ is the event that we visit $i$ at time $t$ for some $t \ge 1$).
\begin{align} & \E(N_i \mid X_0 = i) \\ &= \E(N_i \mid X_0 = i, T_i = \infty)\Pr(T_i = \infty \mid X_0 = i) \\ &\quad+ \sum_{t=1}^{\infty} \E(N_i \mid X_0 = i, T_i = t)\Pr(T_i = t \mid X_0 = i) \\ &= \Pr(T_i = \infty \mid X_0 = i) \\ &\quad+ \sum_{t=1}^{\infty} (1 + \E(N_i \mid X_0 = i))\Pr(T_i = t \mid X_0 = i) \tag{$\begin{array}{ll}\textrm{by markov property} \\ \textrm{and time homogeneity}\end{array}$} \\ &= \Pr(T_i = \infty \mid X_0 = i) \\ &\quad+ (1 + \E(N_i \mid X_0 = i))\Pr(T_i \neq \infty \mid X_0 = i) \\ &= 1 + \E(N_i \mid X_0 = i)\Pr(T_i \neq \infty \mid X_0 = i) \\ &= 1 + \E(N_i \mid X_0 = i)\Pr(R_i \mid X_0 = i). \end{align} Hence, \[ \E(N_i \mid X_0 = i) = \frac{1}{1 - \Pr(R_i \mid X_0 = 1)}. \]
Let \[ A_{i,t} = \begin{cases} 1 & \textrm{ if } X_t = i \\ 0 & \textrm{ otherwise} \end{cases}. \] Then $N_i = \sum_{t=0}^{\infty} A_{i,t}$.
\begin{align} & \E(N_i \mid X_0 = i) \\ &= \sum_{t=0}^{\infty} \E(A_{i,t} \mid X_0 = i) \tag{linearity of expectation} \\ &= \sum_{t=0}^{\infty} \Pr(X_t = i \mid X_0 = i) \\ &= \sum_{t=0}^{\infty} P^{(t)}(i, i). \end{align}
Dependency for:
Info:
- Depth: 8
- Number of transitive dependencies: 25
Transitive dependencies:
- /analysis/topological-space
- /sets-and-relations/countable-set
- /sets-and-relations/de-morgan-laws
- /measure-theory/linearity-of-lebesgue-integral
- /measure-theory/lebesgue-integral
- σ-algebra
- Generated σ-algebra
- Borel algebra
- Measurable function
- Generators of the real Borel algebra (incomplete)
- Measure
- σ-algebra is closed under countable intersections
- Group
- Ring
- Field
- Vector Space
- Semiring
- Matrix
- Probability
- Conditional probability (incomplete)
- Random variable
- Markov chain
- Markov chains: recurrent states
- Expected value of a random variable
- Linearity of expectation