Cauchy-Schwarz inequality for random variables

Dependencies:

  1. Random variable
  2. Expected value of a random variable
  3. Linearity of expectation
  4. Inner product space
  5. Cauchy-Schwarz Inequality

Let $X$ and $Y$ be two complex-valued random variables. Then $|\E(X\Ybar)|^2 \le \E(|X|^2)\E(|Y|^2)$.

Proof

Let $V$ be the set of all complex-valued random variables.

Lemma 1: $V$ is a vector space over $\mathbb{C}$.

Proof. $(V, +)$ is an abelian group because

$V$ is a vector space because

For two random variables $X$ and $Y$, define the inner-product $\langle X, Y \rangle$ as $\E(X\Ybar)$.

Lemma 2: $(V, \langle \cdot \rangle)$ is an inner-product space.

Proof.

On applying the Cauchy-Schwarz inequality for inner-product spaces, we get \[ |\E(X\Ybar)|^2 = |\langle X, Y \rangle|^2 \le \langle X, X \rangle \langle Y, Y \rangle = \E(|X|^2)\E(|Y|^2). \]

Dependency for: None

Info:

Transitive dependencies:

  1. /analysis/topological-space
  2. /sets-and-relations/countable-set
  3. /complex-numbers/conjugation-is-homomorphic
  4. /sets-and-relations/de-morgan-laws
  5. /measure-theory/linearity-of-lebesgue-integral
  6. /measure-theory/lebesgue-integral
  7. σ-algebra
  8. Generated σ-algebra
  9. Borel algebra
  10. Measurable function
  11. Generators of the real Borel algebra (incomplete)
  12. Measure
  13. σ-algebra is closed under countable intersections
  14. Group
  15. Ring
  16. Field
  17. Vector Space
  18. Inner product space
  19. Inner product is anti-linear in second argument
  20. Zero in inner product
  21. Cauchy-Schwarz Inequality
  22. Probability
  23. Random variable
  24. Expected value of a random variable
  25. Linearity of expectation