Var(Y) = Var(E(Y|X)) + E(Var(Y|X))
Dependencies:
- Random variable
- Expected value of a random variable
- Variance of a random variable
- Conditional expectation
- Conditional variance
- Linearity of expectation
- Law of total probability: E(Y) = E(E(Y|X)) (incomplete)
$\newcommand{\E}{\operatorname{E}}$ $\newcommand{\Var}{\operatorname{Var}}$ Let $Y$ be a real-valued random variable. Let $X$ be a random variable. Then \[ \Var(Y) = \Var(\E(Y|X)) + \E(\Var(Y|X)). \]
Proof
Let $Z = \E(Y|X)$.
\begin{align} & \Var(Z) + \E(\Var(Y|X)) \\ &= (\E(Z^2) - \E(Z)^2) + \E(\E(Y^2|X) - \E(Y|X)^2) \tag{definition of $\Var$} \\ &= \E(Z^2) - \E(Z)^2 + \E(\E(Y^2|X)) - \E(Z^2) \tag{linearity of expectation} \\ &= \E(\E(Y^2|X)) - \E(Z)^2 \\ &= \E(Y^2) - \E(Y)^2 \tag{law of total probability} \\ &= \Var(Y) \end{align}
Dependency for: None
Info:
- Depth: 10
- Number of transitive dependencies: 25
Transitive dependencies:
- /analysis/topological-space
- /sets-and-relations/countable-set
- /sets-and-relations/de-morgan-laws
- /measure-theory/linearity-of-lebesgue-integral
- /measure-theory/lebesgue-integral
- σ-algebra
- Generated σ-algebra
- Borel algebra
- Measurable function
- Generators of the real Borel algebra (incomplete)
- Measure
- σ-algebra is closed under countable intersections
- Group
- Ring
- Field
- Vector Space
- Probability
- Conditional probability (incomplete)
- Random variable
- Expected value of a random variable
- Conditional expectation
- Law of total probability: E(Y) = E(E(Y|X)) (incomplete)
- Linearity of expectation
- Variance of a random variable
- Conditional variance