Var(aX + b) = a^2 Var(X)
Dependencies:
Let $X$ be a random variable. Let $a \in \mathbb{R}$ and $b \in \operatorname{support}(X)$. Then $\newcommand{\E}{\operatorname{E}}\newcommand{\Var}{\operatorname{Var}}$ $\Var(aX + b) = a^2\Var(X)$.
Proof
\[ \Var(aX + b) = \E((aX + b - \E(aX + b))^2) = \E((aX - a\E(X))^2) = a^2\E((X - \E(X))^2) = a^2\Var(X) \]
Dependency for: None
Info:
- Depth: 9
- Number of transitive dependencies: 21
Transitive dependencies:
- /analysis/topological-space
- /sets-and-relations/countable-set
- /sets-and-relations/de-morgan-laws
- /measure-theory/linearity-of-lebesgue-integral
- /measure-theory/lebesgue-integral
- σ-algebra
- Generated σ-algebra
- Borel algebra
- Measurable function
- Generators of the real Borel algebra (incomplete)
- Measure
- σ-algebra is closed under countable intersections
- Group
- Ring
- Field
- Vector Space
- Probability
- Random variable
- Expected value of a random variable
- Linearity of expectation
- Variance of a random variable