Variance of sum of independent random variables
Dependencies:
- Variance of a random variable
- Independence of random variables (incomplete)
- Linearity of expectation
- Expectation of product of independent random variables (incomplete)
$\newcommand{\Var}{\operatorname{Var}}$ $\newcommand{\E}{\operatorname{E}}$ Let $X_1, X_2, \ldots, X_n$ be independent random variables. Then \[ \Var\left(\sum_{i=1}^n X_i\right) = \sum_{i=1}^n \Var(X_i) \]
Proof
This is trivially true when $n$ is 0 or 1.
For $n = 2$, we have \begin{align} \Var(X_1 + X_2) &= \E((X_1 + X_2)^2) - (\E(X_1 + X_2))^2 \\ &= (\E(X_1^2) + \E(X_2^2) + 2\E(X_1X_2)) \\ &\qquad - (\E(X_1)^2 + \E(X_2)^2 + 2\E(X_1)\E(X_2)) \tag{linearity of expectation} \\ &= \Var(X_1) + \Var(X_2) + 2(\E(X_1X_2) - \E(X_1)\E(X_2)) \\ &= \Var(X_1) + \Var(X_2) \tag{$X_1$ and $X_2$ are independent} \end{align}
For $n \ge 3$, we can prove by induction. \begin{align} & \Var\left(\sum_{i=1}^n X_i\right) \\ &= \Var\left(\sum_{i=1}^{n-1} X_i\right) + \Var(X_n) \tag{using induction hypothesis for $n=2$} \\ &= \left(\sum_{i=1}^{n-1} \Var(X_i)\right) + \Var(X_n) \tag{using induction hypothesis for $n-1$} \\ &= \sum_{i=1}^n \Var(X_i) \end{align}
Dependency for: None
Info:
- Depth: 9
- Number of transitive dependencies: 26
Transitive dependencies:
- /analysis/topological-space
- /sets-and-relations/countable-set
- /sets-and-relations/de-morgan-laws
- /measure-theory/linearity-of-lebesgue-integral
- /measure-theory/lebesgue-integral
- σ-algebra
- Generated σ-algebra
- Borel algebra
- Measurable function
- Generators of the real Borel algebra (incomplete)
- Measure
- σ-algebra is closed under countable intersections
- Group
- Ring
- Field
- Vector Space
- Probability
- Conditional probability (incomplete)
- Independence of events
- Independence of composite events
- Random variable
- Expected value of a random variable
- Independence of random variables (incomplete)
- Expectation of product of independent random variables (incomplete)
- Linearity of expectation
- Variance of a random variable