Chernoff bound
Dependencies:
- Random variable
- Bernoulli random variable
- Independence of random variables (incomplete)
- Expected value of a random variable
- Markov's bound
- Expectation of product of independent random variables (incomplete)
- Linearity of expectation
- Bound on exponential
- Bound on log 2
Let $X_1, X_2, \ldots, X_n$ $\newcommand{\E}{\operatorname{E}}$ be independent Bernoulli random variables, where $\Pr(X_i=1) = p_i$.
Let $X = \sum_{i=1}^n X_i$. Let $\mu = \E(X)$. Let $\delta > 0$.
\[ \Pr(X \ge (1+\delta)\mu) \le \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu} \le \exp\left(-\frac{\mu\delta^2}{2+\delta}\right) \le \begin{cases}\exp\left( - \frac{\mu\delta^2}{3} \right) & 0 < \delta \le 1 \\ \exp\left( - \frac{\mu\delta}{3} \right) & \delta \ge 1 \end{cases} \]
\[ \Pr(X \le (1-\delta)\mu) \le \left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^{\mu} \le \exp\left(-\frac{\mu\delta^2}{2}\right) \quad \textrm{where } \delta < 1 \]
\[ \Pr(\lvert X - \mu \rvert > \delta\mu) \le 2\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu} \le 2\exp\left(-\frac{\mu\delta^2}{3}\right) \quad \textrm{where } \delta < 1 \]
Proof
By linearity of expectation, we get \[ \mu = \E(X) = \sum_{i=1}^n \E(X_i) = \sum_{i=1}^n p_i \] \begin{align} \Pr(e^{tX} \ge e^{ta}) &\le \frac{\E(e^{tX})}{e^{ta}} \tag{Markov bound} \\ &= e^{-ta}\E\left(\prod_{i=1}^n e^{tX_i}\right) \\ &= e^{-ta}\prod_{i=1}^n \E(e^{tX_i}) \tag{$X_i$ are independent} \\ &= e^{-ta}\prod_{i=1}^n (1 + p_i(e^t-1)) \\ &\le e^{-ta}\prod_{i=1}^n e^{p_i(e^t-1)} \tag{$1+x \le e^x$} \\ &= \exp(\mu(e^t-1) - ta) \end{align}
Let $t = \ln(1+\delta)$, $a = \mu(1+\delta)$. Since $t > 0$, $\Pr(X \ge a) = \Pr(e^{tX} \ge e^{ta})$. \[ \Pr(X \ge (1+\delta)\mu) \le \exp(\mu(\delta - (1+\delta)\ln(1+\delta))) = \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu} \] Using the bound $\ln(1+\delta) \ge \frac{2\delta}{2+\delta}$, we get \[ \Pr(X \ge (1+\delta)\mu) \le \exp\left(-\frac{\mu\delta^2}{2+\delta}\right) \]
We can further simplify this by considering the cases $\delta \le 1$ and $\delta \ge 1$ separately. \begin{align} & \delta \le 1 \implies 2 + \delta \le 3 \implies \frac{\delta^2}{2+\delta} \ge \frac{\delta^2}{3} \\ &\implies \Pr(X \ge (1+\delta)\mu) \le \exp\left(-\frac{\mu\delta^2}{2+\delta}\right) \le \exp\left( - \frac{\mu\delta^2}{3} \right) \end{align} \begin{align} & \delta \ge 1 \implies 1 + \frac{2}{\delta} \le 3 \implies \frac{\delta}{\delta+2} \ge \frac{1}{3} \\ &\implies \Pr(X \ge (1+\delta)\mu) \le \exp\left(-\frac{\mu\delta^2}{2+\delta}\right) \le \exp\left( - \frac{\mu\delta}{3} \right) \end{align}
Now let $0 < \delta < 1$, $t = \ln(1-\delta)$, $a = \mu(1-\delta)$. Since $t < 0$, $\Pr(X \le a) = \Pr(e^{tX} \ge e^{ta})$. \[ \Pr(X \le (1-\delta)\mu) \le \exp(\mu(-\delta - (1-\delta)\ln(1-\delta))) = \left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^{\mu} \]
Let $f(x) = x + (1-x)\ln(1-x) - \frac{x^2}{2}$. Then $f'(x) = - x - \ln(1-x)$ and $f''(x) = \frac{x}{1-x}$. For $0 < x < 1$, $f''(x) > 0$. Since $f'(0) = 0$, $f'(x) \ge 0$. Since $f(0) = 0$, $f(x) \ge 0$.
\[ \Pr(X \le (1-\delta)\mu) \le \exp(\mu(-\delta - (1-\delta)\ln(1-\delta))) \le \exp\left(-\frac{\mu\delta^2}{2}\right) \]
Let $g(x) = (x - (1+x)\ln(1+x)) - (-x-(1-x)\ln(1-x)) = 2x - (1+x)\ln(1+x) + (1-x)\ln(1-x)$.
Then $g'(x) = -\ln(1-x^2)$. Since $g(0) = 0$ and $g'(x) \ge 0$, $g(x) \ge 0$. This gives us \[ \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu} \ge \left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^{\mu} \]
\begin{align} & \Pr(\lvert X - \mu \rvert > \delta\mu) \\ &= \Pr(X \ge (1+\delta)\mu) + \Pr(X \le (1-\delta)\mu) \\ &\le \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu} + \left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^{\mu} \\ &\le 2\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu} \\ &\le 2\exp\left(-\frac{\mu\delta^2}{3}\right) \end{align}
Dependency for: None
Info:
- Depth: 9
- Number of transitive dependencies: 29
Transitive dependencies:
- /analysis/topological-space
- /sets-and-relations/countable-set
- /sets-and-relations/de-morgan-laws
- /measure-theory/linearity-of-lebesgue-integral
- /measure-theory/lebesgue-integral
- σ-algebra
- Generated σ-algebra
- Borel algebra
- Measurable function
- Generators of the real Borel algebra (incomplete)
- Measure
- σ-algebra is closed under countable intersections
- Group
- Ring
- Field
- Vector Space
- Probability
- Conditional probability (incomplete)
- Independence of events
- Independence of composite events
- Random variable
- Expected value of a random variable
- Independence of random variables (incomplete)
- Expectation of product of independent random variables (incomplete)
- Linearity of expectation
- Bernoulli random variable
- Markov's bound
- Bound on log 2
- Bound on exponential