Measurable function
Dependencies:
$\newcommand{\Fcal}{\mathcal{F}}$ $\newcommand{\Ecal}{\mathcal{E}}$ Let $(X, \Ecal)$ and $(Y, \Fcal)$ be $\sigma$-algebras. Let $f: X \mapsto Y$ be a function.
Let $T \subseteq Y$. Define $f^{-1}(T) = \{x \in X: f(x) \in T\}$.
$f$ is said to be measurable iff $\forall T \in \Fcal, f^{-1}(T) \in \Ecal$.
Dependency for:
Info:
- Depth: 2
- Number of transitive dependencies: 2
Transitive dependencies:
- /sets-and-relations/countable-set
- σ-algebra