Covariance of 2 random variables
Dependencies:
Let $X$ and $Y$ be real random variables. Then the covariance of $X$ and $Y$ is defined to be $\newcommand{\E}{\operatorname{E}}$ \[ \operatorname{Cov}(X, Y) = \E((X - \E(X))(Y - \E(Y))) \] An alternative definition is \[ \operatorname{Cov}(X, Y) = \E(XY) - \E(X)\E(Y) \] These definitions are equivalent.
Proof
\begin{align} & \E((X-\E(X))(Y - \E(Y))) \\ &= \E(XY - \E(X)Y - \E(Y)X + \E(X)\E(Y)) \\ &= \E(XY) - \E(X)\E(Y) - \E(Y)\E(X) + \E(X)\E(Y) \tag{linearity of expectation} \\ &= \E(XY) - \E(X)\E(Y) \end{align}
Dependency for:
Info:
- Depth: 8
- Number of transitive dependencies: 20
Transitive dependencies:
- /analysis/topological-space
- /sets-and-relations/countable-set
- /sets-and-relations/de-morgan-laws
- /measure-theory/linearity-of-lebesgue-integral
- /measure-theory/lebesgue-integral
- σ-algebra
- Generated σ-algebra
- Borel algebra
- Measurable function
- Generators of the real Borel algebra (incomplete)
- Measure
- σ-algebra is closed under countable intersections
- Group
- Ring
- Field
- Vector Space
- Probability
- Random variable
- Expected value of a random variable
- Linearity of expectation