|mean - median| ≤ stddev

Dependencies:

  1. Expected value of a random variable
  2. Variance of a random variable
  3. X ≤ Y ⟹ E(X) ≤ E(Y)
  4. Linearity of expectation
  5. Minimizer of f(z) = E(|X-z|) is median

Let $X$ be a real-valued random variable. Let $m$ be a median of $X$. Then $(\E(X) - m)^2 \le \Var(X)$.

Proof

\begin{align} & -|X-m| \le X-m \le |X-m| \\ &\implies |\E(X-m)| \le \E(|X-m|) \\ &\implies \E(X-m)^2 \le \E(|X-m|)^2 \end{align}

Let $\mu = \E(X)$. Let $Y = |X-\mu|$. \[ \Var(Y) = \E(Y^2) - \E(Y)^2 = E((Y - \E(Y))^2) \ge 0. \] Hence, $\E(Y^2) \ge \E(Y)^2$, i.e., $\E((X-\mu)^2) \ge \E(|X-\mu|)^2$.

\begin{align} (\E(X)-m)^2 &= \E(X-m)^2 \tag{linearity of expectation} \\ &\le \E(|X-m|)^2 \\ &\le \E(|X-\mu|)^2 \tag{$m$ minimizes $f(z) = \E(|X-z|)$} \\ &\le \E((X-\mu)^2) = \Var(X) \end{align}

Dependency for: None

Info:

Transitive dependencies:

  1. /analysis/topological-space
  2. /sets-and-relations/countable-set
  3. /sets-and-relations/de-morgan-laws
  4. /measure-theory/linearity-of-lebesgue-integral
  5. /measure-theory/lebesgue-integral
  6. σ-algebra
  7. Generated σ-algebra
  8. Borel algebra
  9. Measurable function
  10. Generators of the real Borel algebra (incomplete)
  11. Measure
  12. σ-algebra is closed under countable intersections
  13. Group
  14. Ring
  15. Field
  16. Vector Space
  17. Probability
  18. Random variable
  19. Median of a random variable
  20. Random variables: multiple medians
  21. Expected value of a random variable
  22. X ≤ Y ⟹ E(X) ≤ E(Y)
  23. Linearity of expectation
  24. Minimizer of f(z) = E(|X-z|) is median
  25. Variance of a random variable