|mean - median| ≤ stddev
Dependencies:
- Expected value of a random variable
- Variance of a random variable
- X ≤ Y ⟹ E(X) ≤ E(Y)
- Linearity of expectation
- Minimizer of f(z) = E(|X-z|) is median
$\newcommand{\E}{\operatorname{E}}$ $\newcommand{\Var}{\operatorname{Var}}$ Let $X$ be a real-valued random variable. Let $m$ be a median of $X$. Then $(\E(X) - m)^2 \le \Var(X)$.
Proof
\begin{align} & -|X-m| \le X-m \le |X-m| \\ &\implies |\E(X-m)| \le \E(|X-m|) \\ &\implies \E(X-m)^2 \le \E(|X-m|)^2 \end{align}
Let $\mu = \E(X)$. Let $Y = |X-\mu|$. \[ \Var(Y) = \E(Y^2) - \E(Y)^2 = E((Y - \E(Y))^2) \ge 0. \] Hence, $\E(Y^2) \ge \E(Y)^2$, i.e., $\E((X-\mu)^2) \ge \E(|X-\mu|)^2$.
\begin{align} (\E(X)-m)^2 &= \E(X-m)^2 \tag{linearity of expectation} \\ &\le \E(|X-m|)^2 \\ &\le \E(|X-\mu|)^2 \tag{$m$ minimizes $f(z) = \E(|X-z|)$} \\ &\le \E((X-\mu)^2) = \Var(X) \end{align}
Dependency for: None
Info:
- Depth: 9
- Number of transitive dependencies: 25
Transitive dependencies:
- /analysis/topological-space
- /sets-and-relations/countable-set
- /sets-and-relations/de-morgan-laws
- /measure-theory/linearity-of-lebesgue-integral
- /measure-theory/lebesgue-integral
- σ-algebra
- Generated σ-algebra
- Borel algebra
- Measurable function
- Generators of the real Borel algebra (incomplete)
- Measure
- σ-algebra is closed under countable intersections
- Group
- Ring
- Field
- Vector Space
- Probability
- Random variable
- Median of a random variable
- Random variables: multiple medians
- Expected value of a random variable
- X ≤ Y ⟹ E(X) ≤ E(Y)
- Linearity of expectation
- Minimizer of f(z) = E(|X-z|) is median
- Variance of a random variable