Zm × Zn is isomorphic to Zmn iff m and n are coprime

Dependencies:

  1. Isomorphism on Groups
  2. Cyclicness is invariant under isomorphism
  3. Order of element in external direct product
  4. Order of elements in cyclic group
  5. Cyclic groups are isomorphic to Z or Zn
  6. GCD times LCM equals product

$\mathbb{Z}_m \times \mathbb{Z}_n \cong \mathbb{Z}_{mn} \iff \gcd(m, n) = 1$

Proof

Proof of 'only if' part

$\mathbb{Z}_m \times \mathbb{Z}_n \cong \mathbb{Z}_{mn} \implies \mathbb{Z}_m \times \mathbb{Z}_n$ is cyclic.

Let $(a, b)$ be a generator of $\mathbb{Z}_m \times \mathbb{Z}_n$. Then $\operatorname{order}((a, b)) = mn$.

Let $o_a = \operatorname{order}(a)$ and $o_b = \operatorname{order}(b)$.

\begin{align} & o_a \mid m \wedge o_b \mid n \tag{$\mathbb{Z}_m$ and $\mathbb{Z}_n$ are cyclic} \\ &\Rightarrow o_a, o_b \mid \operatorname{lcm}(m, n) \\ &\Rightarrow \operatorname{lcm}(m, n) \textrm{ is a common multiple of } o_a \textrm{ and } o_b \\ &\Rightarrow \operatorname{lcm}(o_a, o_b) \le \operatorname{lcm}(m, n) \end{align}

$$\operatorname{order}((a, b)) = \operatorname{lcm}(o_a, o_b) \le \operatorname{lcm}(m, n) = \frac{mn}{\gcd(m, n)}$$

Therefore, $\gcd(m, n) = 1$.

Proof of 'if' part

Let $\gcd(m, n) = 1$.

Let $a$ and $b$ be generators of $\mathbb{Z}_m$ and $\mathbb{Z}_n$ respectively, $o_a = m$ and $o_b = n$.

\begin{align} & \operatorname{order}((a, b)) = \operatorname{lcm}(o_a, o_b) = \operatorname{lcm}(m, n) = \frac{mn}{\gcd(m, n)} = mn \\ &\Rightarrow \mathbb{Z}_m \times \mathbb{Z}_n = \langle (a, b) \rangle \wedge |\mathbb{Z}_m \times \mathbb{Z}_n| = mn \\ &\Rightarrow \mathbb{Z}_m \times \mathbb{Z}_n \cong \mathbb{Z}_{mn} \end{align}

Dependency for: None

Info:

Transitive dependencies:

  1. Group
  2. Homomorphism on groups
  3. Mapping of power is power of mapping
  4. Isomorphism on Groups
  5. Cyclicness is invariant under isomorphism
  6. Identity of a group is unique
  7. Subgroup
  8. External direct product is a group
  9. Order of element in external direct product
  10. Inverse of a group element is unique
  11. Conditions for a subset to be a subgroup
  12. Cyclic Group
  13. Cyclic groups are isomorphic to Z or Zn
  14. Every number has a prime factorization
  15. Coprime
  16. Integer Division Theorem
  17. GCD is the smallest Linear Combination
  18. Common divisor divides GCD
  19. gcd(a1/d, a2/d, ..., an/d) = gcd(a1, a_2, ..., an)/d
  20. If x divides ab and x is coprime to a, then x divides b
  21. Order of elements in cyclic group
  22. Euclid's lemma
  23. Fundamental Theorem of Arithmetic
  24. Prime Factorization Exponent List (PFEL)
  25. PFEL of ratio is difference of PFEL
  26. PFEL of product is sum of PFEL
  27. Divisible iff PFEL is less than or equal
  28. PFEL of lcm is max of PFEL
  29. PFEL of gcd is min of PFEL
  30. LCM divides common multiple
  31. Product of coprime divisors is divisor
  32. GCD times LCM equals product