Divisible iff PFEL is less than or equal
Dependencies:
$b \mid a \iff \operatorname{PFEL}(a) \ge \operatorname{PFEL}(b)$
Proof
Let $\operatorname{PFEL}(a)_i = a_i$ and $\operatorname{PFEL}(b)_i = b_i$.
\begin{align} & b \mid a \\ &\iff \frac{a}{b} \in \mathbb{Z} \\ &\iff \forall i \in \mathbb{N}, \operatorname{PFEL}(\frac{a}{b})_i \ge 0 \\ &\iff \forall i \in \mathbb{N}, a_i - b_i \ge 0 \\ &\iff \forall i \in \mathbb{N}, \operatorname{PFEL}(a)_i \ge \operatorname{PFEL}(b)_i \\ &\iff \operatorname{PFEL}(a) \ge \operatorname{PFEL}(b) \end{align}
Dependency for:
Info:
- Depth: 6
- Number of transitive dependencies: 7