Order of elements in cyclic group
Dependencies:
- gcd(a1/d, a2/d, ..., an/d) = gcd(a1, a_2, ..., an)/d
- Cyclic Group
- If x divides ab and x is coprime to a, then x divides b
In a cyclic group of infinite order, identity has order 1 and all other elements have order $\infty$.
In a cyclic group of order $n$, order of $a^k$ is $\frac{n}{\gcd(n, k)}$. Furthermore, the (distinct) elements which have order $\frac{n}{d}$ are $\left\{a^{di}: i \in \mathbb{Z}_{\frac{n}{d}}^*\right\}$.
Proof that $\operatorname{order}(a^k) = \frac{n}{\gcd(k, n)}$
Let $g = \gcd(k, n) = rk + pn$ and $k = sg$.
Let $o = \operatorname{order}(a^k)$.
$$ (a^k)^{\frac{n}{g}} = a^{ns} = e \implies o \mid \frac{n}{g}$$
$$ a^{ko} = (a^k)^o = e \implies n \mid ko \implies \frac{n}{g} \mid so $$
$$ \gcd(k, n) = g \Rightarrow \gcd\left(s, \frac{n}{g}\right) = 1 $$
Since $\frac{n}{g}$ and $s$ are coprime and $\frac{n}{g}$ divides $so$, by Euclid's lemma 2, we get that $\frac{n}{g}$ divides $o$.
Therefore, $\operatorname{order}(a^k) = \frac{n}{g}$.
Proof that elements with order $\frac{n}{d}$ are $\left\{ a^{di}: i \in \mathbb{Z}_{\frac{n}{d}}^* \right\}$
$$ \operatorname{order}(a^j) = \frac{n}{d} \iff \gcd(j, n) = d \iff \gcd(j/d, n/d) = 1 \iff j/d \in \mathbb{Z}_{n/d}^* $$
Dependency for:
Info:
- Depth: 4
- Number of transitive dependencies: 12
Transitive dependencies:
- Group
- Identity of a group is unique
- Subgroup
- Inverse of a group element is unique
- Conditions for a subset to be a subgroup
- Cyclic Group
- Coprime
- Integer Division Theorem
- GCD is the smallest Linear Combination
- Common divisor divides GCD
- gcd(a1/d, a2/d, ..., an/d) = gcd(a1, a_2, ..., an)/d
- If x divides ab and x is coprime to a, then x divides b