gcd(a1/d, a2/d, ..., an/d) = gcd(a1, a_2, ..., an)/d
Dependencies:
\[ \gcd\left(\frac{a_1}{d}, \frac{a_2}{d}, \ldots, \frac{a_n}{d}\right) = \frac{\gcd(a_1, a_2, \ldots, a_n)}{d} \textrm{, where } d \mid \gcd(a_1, a_2, \ldots, a_n) \]
Proof
Let $\operatorname{D}(a_1, a_2, \ldots, a_n)$ be the set of common divisors of $a_1, a_2, \ldots, a_n$.
\begin{align} & g = \gcd(a_1, a_2, \ldots, a_n) \\ &\Rightarrow g \mid a_i \forall i \\ &\Rightarrow \frac{g}{d} \mid \frac{a_i}{d} \forall i \\ &\Rightarrow \frac{g}{d} \in \operatorname{D}\left(\frac{a_1}{d}, \frac{a_2}{d}, \ldots, \frac{a_n}{d}\right) \\ &\Rightarrow \frac{g}{d} \le \gcd\left(\frac{a_1}{d}, \frac{a_2}{d}, \ldots, \frac{a_n}{d}\right) \end{align}
\begin{align} & g' = \gcd\left(\frac{a_1}{d}, \frac{a_2}{d}, \ldots, \frac{a_n}{d}\right) \\ &\Rightarrow g' \mid \frac{a_i}{d} \forall i \\ &\Rightarrow g'd \mid a_i \forall i \\ &\Rightarrow g'd \in \operatorname{D}(a_1, a_2, \ldots, a_n) \\ &\Rightarrow g'd \le \gcd(a_1, a_2, \ldots, a_n) \\ &\Rightarrow g' \le \frac{g}{d} \end{align}
$g' \le \frac{g}{d}$ and $\frac{g}{d} \le g'$ imply that $g' = \frac{g}{d}$.
Therefore, \[ \gcd\left(\frac{a_1}{d}, \frac{a_2}{d}, \ldots, \frac{a_n}{d}\right) = \frac{\gcd(a_1, a_2, \ldots, a_n)}{d} \textrm{, where } d \mid \gcd(a_1, a_2, \ldots, a_n) \]
Dependency for:
- GCD partitioning of Zn
- GCD times LCM equals product
- Order of elements in cyclic group
- A polynomial in rationals is a rational times a polynomial in integers
Info:
- Depth: 3
- Number of transitive dependencies: 3