PFEL of gcd is min of PFEL

Dependencies:

  1. Prime Factorization Exponent List (PFEL)
  2. Divisible iff PFEL is less than or equal

PFEL of $\gcd(a, b)$ equals the element-wise minimum of PFELs of $a$ and $b$.

Proof

Let $\operatorname{PFEL}(a) = [a_i]_{i=1}^\infty$ and $\operatorname{PFEL}(b) = [b_i]_{i=1}^\infty$.

Let $g = \gcd(a, b)$ and $g_i = \operatorname{PFEL}(\gcd(a, b))_i$.

Let $d_i = \min(a_i, b_i)$ and $d = \prod_{i=1}^\infty p_i^{d_i}$.

$$ d_i \le a_i \wedge d_i \le b_i \implies d \mid a \wedge d \mid b \implies d \le g $$

\begin{align} & g \mid a \wedge g \mid b \\ &\Rightarrow g_i \le a_i \wedge g_i \le b_i \\ &\Rightarrow g_i \le \min(a_i, b_i) = d_i \\ &\Rightarrow g \mid d \\ &\Rightarrow g \le d \end{align}

Therefore, $g = d$ and $g_i = d_i$.

Dependency for:

  1. GCD times LCM equals product

Info:

Transitive dependencies:

  1. Every number has a prime factorization
  2. Integer Division Theorem
  3. GCD is the smallest Linear Combination
  4. Euclid's lemma
  5. Fundamental Theorem of Arithmetic
  6. Prime Factorization Exponent List (PFEL)
  7. PFEL of ratio is difference of PFEL
  8. Divisible iff PFEL is less than or equal