PFEL of ratio is difference of PFEL
Dependencies:
PFEL of $\frac{a}{b}$ equals the element-wise difference of PFELs of $a$ and $b$.
Proof
\begin{align} & \operatorname{PFEL}(a) = [a_i]_{i=1}^\infty \wedge \operatorname{PFEL}(b) = [b_i]_{i=1}^\infty \\ &\Rightarrow a = \prod_{i=1}^\infty p_i^{a_i} \wedge b = \prod_{i=1}^\infty p_i^{b_i} \\ &\Rightarrow \frac{a}{b} = \prod_{i=1}^\infty p_i^{a_i - b_i} \\ &\Rightarrow \operatorname{PFEL}\left(\frac{a}{b}\right) = [a_i - b_i]_{i=1}^\infty \end{align}
Dependency for:
Info:
- Depth: 5
- Number of transitive dependencies: 6