PFEL of lcm is max of PFEL

Dependencies:

  1. Prime Factorization Exponent List (PFEL)
  2. Divisible iff PFEL is less than or equal

PFEL of $\operatorname{lcm}(a, b)$ equals the element-wise maximum of PFELs of $a$ and $b$.

Proof

Let $\operatorname{PFEL}(a) = [a_i]_{i=1}^\infty$ and $\operatorname{PFEL}(b) = [b_i]_{i=1}^\infty$.

Let $l = \operatorname{lcm}(a, b)$ and $l_i = \operatorname{PFEL}(\operatorname{lcm}(a, b))_i$.

Let $m_i = \max(a_i, b_i)$ and $m = \prod_{i=1}^\infty p_i^{m_i}$.

$$ a_i \le m_i \wedge b_i \le m_i \implies a \mid m \wedge b \mid m \implies l \le m $$

\begin{align} & a \mid l \wedge b \mid l \\ &\Rightarrow a_i \le l_i \wedge b_i \le l_i \\ &\Rightarrow \max(a_i, b_i) = m_i \le l_i \\ &\Rightarrow m \mid l \\ &\Rightarrow m \le l \end{align}

Therefore, $m = l$ and $m_i = l_i$.

Dependency for:

  1. GCD times LCM equals product

Info:

Transitive dependencies:

  1. Every number has a prime factorization
  2. Integer Division Theorem
  3. GCD is the smallest Linear Combination
  4. Euclid's lemma
  5. Fundamental Theorem of Arithmetic
  6. Prime Factorization Exponent List (PFEL)
  7. PFEL of ratio is difference of PFEL
  8. Divisible iff PFEL is less than or equal