Cyclicness is invariant under isomorphism
Dependencies:
If $\langle a \rangle \cong H$ via $\phi$, then $H = \langle \phi(a) \rangle$. This means that $H$ is cyclic.
Proof
\begin{align} & g \in \langle \phi(a) \rangle \\ &\iff \exists k, g = \phi(a)^k \\ &\iff \exists k, g = \phi(a^k) \\ &\iff g \in \phi(\langle a \rangle) = H \end{align}
Therefore, $\langle \phi(a) \rangle = H$.
Dependency for:
Info:
- Depth: 3
- Number of transitive dependencies: 4