Zero in inner product
Dependencies:
$\langle \mathbf{0}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{0} \rangle = 0$.
Proof
\[ \langle \mathbf{0}, \mathbf{v} \rangle = \langle \mathbf{0} + \mathbf{0}, \mathbf{v} \rangle = \langle \mathbf{0}, \mathbf{v} \rangle + \langle \mathbf{0}, \mathbf{v} \rangle \tag{linearity in first argument} \Rightarrow \langle \mathbf{0}, \mathbf{v} \rangle = 0 \]
\[ \langle \mathbf{v}, \mathbf{0} \rangle = \overline{\langle \mathbf{0}, \mathbf{v} \rangle} \tag{conjugate symmetry} = \overline{0} = 0 \]
Dependency for:
Info:
- Depth: 5
- Number of transitive dependencies: 5