Cauchy-Schwarz Inequality
Dependencies:
Let $V$ be an inner product space and $\mathbf{u}, \mathbf{v} \in V$. Then $|\langle \mathbf{u}, \mathbf{v} \rangle|^2 \le \langle \mathbf{u}, \mathbf{u} \rangle \langle \mathbf{v}, \mathbf{v} \rangle$.
Proof
\[ \mathbf{v} = 0 \Rightarrow |\langle \mathbf{u}, \mathbf{v} \rangle|^2 = 0 = \langle \mathbf{u}, \mathbf{u} \rangle \langle \mathbf{v}, \mathbf{v} \rangle \]
\[ k = \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\|\mathbf{v}\|^2} \Rightarrow \langle \mathbf{u}, \mathbf{v} \rangle = k\|\mathbf{v}\|^2 \]
\begin{align} 0 &\le \| \mathbf{u} - k\mathbf{v} \|^2 \tag{by positive semidefiniteness} \\ &= \langle \mathbf{u} - k\mathbf{v}, \mathbf{u} - k\mathbf{v} \rangle \\ &= \langle \mathbf{u}, \mathbf{u} \rangle - \langle \mathbf{u}, k\mathbf{v} \rangle - \langle k\mathbf{v}, \mathbf{u} \rangle + \langle k\mathbf{v}, k\mathbf{v} \rangle \tag{by (anti-)linearity} \\ &= \langle \mathbf{u}, \mathbf{u} \rangle - \overline{k}\langle \mathbf{u}, \mathbf{v} \rangle - k\overline{\langle \mathbf{u}, \mathbf{v} \rangle} + k\overline{k}\langle \mathbf{v}, \mathbf{v} \rangle \tag{by (anti-)linearity and conjugate symmetry} \\ &= \|\mathbf{u}\|^2 - \overline{k}k\|\mathbf{v}\|^2 - k\overline{k\|\mathbf{v}\|^2} + k\overline{k}\|\mathbf{v}\|^2 \\ &= \|\mathbf{u}\|^2 - k\overline{k}\|\mathbf{v}\|^2 - k\overline{k}\|\mathbf{v}\|^2 + k\overline{k}\|\mathbf{v}\|^2 \\ &= \|\mathbf{u}\|^2 - k\overline{k}\|\mathbf{v}\|^2 \\ &= \|\mathbf{u}\|^2 - \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\|\mathbf{v}\|^2} \frac{\overline{\langle \mathbf{u}, \mathbf{v} \rangle}}{\|\mathbf{v}\|^2} \|\mathbf{v}\|^2 \\ &= \|\mathbf{u}\|^2 - \frac{|\langle \mathbf{u}, \mathbf{v} \rangle|^2}{\|\mathbf{v}\|^2} \end{align}
Therefore, $|\langle \mathbf{u}, \mathbf{v} \rangle|^2 \le \|\mathbf{u}\|^2\|\mathbf{v}\|^2$
Dependency for:
Info:
- Depth: 6
- Number of transitive dependencies: 8
Transitive dependencies:
- /complex-numbers/conjugation-is-homomorphic
- Group
- Ring
- Field
- Vector Space
- Inner product space
- Inner product is anti-linear in second argument
- Zero in inner product