Markov's bound
Dependencies:
- Random variable
- Expected value of a random variable
- /measure-theory/lebesgue-integral
Let $X$ be a non-negative random variable and let $a > 0$. Then $\newcommand{\E}{\operatorname{E}}$ \[ \Pr(X \ge a) \le \frac{\E(X)}{a} \]
Proof
Define the event $A$ as $A = \{\omega \in \Omega: X(\omega) \ge a\}$. Then
\begin{align} \E(X) &= \int_{\omega \subseteq \Omega} X(\omega)\Pr(\omega) \\ &= \int_{\omega \subseteq A} X(\omega)\Pr(\omega) + \int_{\omega \subseteq \Omega - A} X(\omega)\Pr(\omega) \\ &\ge \int_{\omega \subseteq A} a\Pr(\omega) + \int_{\omega \subseteq \Omega - A} 0\Pr(\omega) \\ &= \Pr(A) \end{align}
Dependency for:
Info:
- Depth: 7
- Number of transitive dependencies: 18
Transitive dependencies:
- /analysis/topological-space
- /sets-and-relations/countable-set
- /sets-and-relations/de-morgan-laws
- /measure-theory/lebesgue-integral
- σ-algebra
- Generated σ-algebra
- Borel algebra
- Measurable function
- Generators of the real Borel algebra (incomplete)
- Measure
- σ-algebra is closed under countable intersections
- Group
- Ring
- Field
- Vector Space
- Probability
- Random variable
- Expected value of a random variable