Markov's bound

Dependencies:

  1. Random variable
  2. Expected value of a random variable
  3. /measure-theory/lebesgue-integral

Let $X$ be a non-negative random variable and let $a > 0$. Then $\newcommand{\E}{\operatorname{E}}$ \[ \Pr(X \ge a) \le \frac{\E(X)}{a} \]

Proof

Define the event $A$ as $A = \{\omega \in \Omega: X(\omega) \ge a\}$. Then

\begin{align} \E(X) &= \int_{\omega \subseteq \Omega} X(\omega)\Pr(\omega) \\ &= \int_{\omega \subseteq A} X(\omega)\Pr(\omega) + \int_{\omega \subseteq \Omega - A} X(\omega)\Pr(\omega) \\ &\ge \int_{\omega \subseteq A} a\Pr(\omega) + \int_{\omega \subseteq \Omega - A} 0\Pr(\omega) \\ &= \Pr(A) \end{align}

Dependency for:

  1. Chebyshev's inequality
  2. Cantelli's inequality
  3. Chernoff bound

Info:

Transitive dependencies:

  1. /analysis/topological-space
  2. /sets-and-relations/countable-set
  3. /sets-and-relations/de-morgan-laws
  4. /measure-theory/lebesgue-integral
  5. σ-algebra
  6. Generated σ-algebra
  7. Borel algebra
  8. Measurable function
  9. Generators of the real Borel algebra (incomplete)
  10. Measure
  11. σ-algebra is closed under countable intersections
  12. Group
  13. Ring
  14. Field
  15. Vector Space
  16. Probability
  17. Random variable
  18. Expected value of a random variable