Cross-covariance matrix
Dependencies:
Let $X = [X_1, X_2, \ldots, X_m]$ and $Y = [Y_1, Y_2, \ldots, Y_n]$ be sequences of random variables. Then the cross-covariance matrix $\operatorname{Cov}(X, Y)$, an $m$-by-$n$ matrix, is defined as $\newcommand{\E}{\operatorname{E}}$ $\newcommand{\Cov}{\operatorname{Cov}}$ \[ \Cov(X, Y)_{i, j} = \Cov(X_i, Y_j) \] An alternative definition is \[ \Cov(X, Y) = \E((X-\E(X))(Y-\E(Y))^T) \] Another definition is \[ \Cov(X, Y) = \E(XY^T) - \E(X)\E(Y)^T \] These definitions are equivalent
Proof
\begin{align} \E((X-\E(X))(Y-\E(Y))^T)[i, j] &= \E((X-\E(X))_i (Y-\E(Y))_j) \\ &= \E((X_i-\E(X_i)) (Y_j-\E(Y_j))) = \Cov(X_i, Y_j) \end{align}
Using linearity of expectation for matrices, we get \begin{align} \E((X-\E(X))(Y-\E(Y))^T) &= \E(XY^T - \E(X)Y^T - X\E(Y)^T + \E(X)\E(Y)^T \\ &= \E(XY^T) - \E(X)\E(Y)^T \end{align}
Dependency for:
Info:
- Depth: 9
- Number of transitive dependencies: 22
Transitive dependencies:
- /analysis/topological-space
- /sets-and-relations/countable-set
- /sets-and-relations/de-morgan-laws
- /measure-theory/linearity-of-lebesgue-integral
- /measure-theory/lebesgue-integral
- σ-algebra
- Generated σ-algebra
- Borel algebra
- Measurable function
- Generators of the real Borel algebra (incomplete)
- Measure
- σ-algebra is closed under countable intersections
- Group
- Ring
- Field
- Vector Space
- Probability
- Random variable
- Expected value of a random variable
- Linearity of expectation
- Covariance of 2 random variables
- Linearity of expectation for matrices