X ≤ Y ⟹ E(X) ≤ E(Y)
Dependencies:
- Random variable
- Expected value of a random variable
- /measure-theory/lebesgue-integral
$\newcommand{\E}{\operatorname{E}}$ Let $X$ and $Y$ be real-valued random variables over the probability space $(\Omega, \mathcal{F}, \Pr)$. If $X(\omega) \le Y(\omega)$ for each $\omega \in \Omega$, then $\E(X) \le \E(Y)$.
Proof
\[ \E(X) = \int_{\omega \subseteq \Omega} X(\omega)\Pr(\omega) \le \int_{\omega \subseteq \Omega} Y(\omega)\Pr(\omega) = \E(Y) \]
Dependency for:
Info:
- Depth: 7
- Number of transitive dependencies: 18
Transitive dependencies:
- /analysis/topological-space
- /sets-and-relations/countable-set
- /sets-and-relations/de-morgan-laws
- /measure-theory/lebesgue-integral
- σ-algebra
- Generated σ-algebra
- Borel algebra
- Measurable function
- Generators of the real Borel algebra (incomplete)
- Measure
- σ-algebra is closed under countable intersections
- Group
- Ring
- Field
- Vector Space
- Probability
- Random variable
- Expected value of a random variable