X ≤ Y ⟹ E(X) ≤ E(Y)

Dependencies:

  1. Random variable
  2. Expected value of a random variable
  3. /measure-theory/lebesgue-integral

Let $X$ and $Y$ be real-valued random variables over the probability space $(\Omega, \mathcal{F}, \Pr)$. If $X(\omega) \le Y(\omega)$ for each $\omega \in \Omega$, then $\E(X) \le \E(Y)$.

Proof

\[ \E(X) = \int_{\omega \subseteq \Omega} X(\omega)\Pr(\omega) \le \int_{\omega \subseteq \Omega} Y(\omega)\Pr(\omega) = \E(Y) \]

Dependency for:

  1. |mean - median| ≤ stddev

Info:

Transitive dependencies:

  1. /analysis/topological-space
  2. /sets-and-relations/countable-set
  3. /sets-and-relations/de-morgan-laws
  4. /measure-theory/lebesgue-integral
  5. σ-algebra
  6. Generated σ-algebra
  7. Borel algebra
  8. Measurable function
  9. Generators of the real Borel algebra (incomplete)
  10. Measure
  11. σ-algebra is closed under countable intersections
  12. Group
  13. Ring
  14. Field
  15. Vector Space
  16. Probability
  17. Random variable
  18. Expected value of a random variable