Chebyshev's inequality

Dependencies:

  1. Expected value of a random variable
  2. Variance of a random variable
  3. Markov's bound

Let $X$ be a real-valued random variable and let $a > 0$. Then \[ \Pr(|X - \E(X)| \ge a) \le \frac{\Var(X)}{a^2} \]

Proof

\begin{align} \Pr(|X - \E(X)| \ge a) &= \Pr((X - \E(X))^2 \ge a^2) \\ &\le \frac{\E((X - \E(X))^2)}{a^2} \tag{by Markov's bound} \\ &= \frac{\Var(X)}{a^2} \end{align}

Dependency for: None

Info:

Transitive dependencies:

  1. /analysis/topological-space
  2. /sets-and-relations/countable-set
  3. /sets-and-relations/de-morgan-laws
  4. /measure-theory/linearity-of-lebesgue-integral
  5. /measure-theory/lebesgue-integral
  6. σ-algebra
  7. Generated σ-algebra
  8. Borel algebra
  9. Measurable function
  10. Generators of the real Borel algebra (incomplete)
  11. Measure
  12. σ-algebra is closed under countable intersections
  13. Group
  14. Ring
  15. Field
  16. Vector Space
  17. Probability
  18. Random variable
  19. Expected value of a random variable
  20. Linearity of expectation
  21. Variance of a random variable
  22. Markov's bound