F[x]/p(x) is isomorphic to F[x]/p(x)F[x]
Dependencies:
- Ring isomorphism
- Polynomials of a ring form a ring
- F[x]/p(x): A ring
- Principal ideal
- Quotient Ring
- gH = H iff g in H
- Degree of sum of polynomials
- Polynomial division theorem
Let $F$ be a field. Let $\phi: F[x]/p(x) \mapsto F[x]/p(x)F[x]$ where $\phi(f(x)) = f(x) + p(x)F[x]$. Then $\phi$ is an isomorphism.
Proof
$\phi$ is homomorphic
\begin{align} & \phi(f_1(x)) + \phi(f_2(x)) \\ &= (f_1(x) + p(x)F[x]) + (f_2(x) + p(x)F[x]) \\ &= (f_1(x) + f_2(x)) + p(x)F[x] \tag{coset addition} \\ &= \phi(f_1(x) + f_2(x)) + p(x)F[x] \end{align}
\begin{align} & \phi(f_1(x))\phi(f_2(x)) \\ &= (f_1(x) + p(x)F[x])(f_2(x) + p(x)F[x]) \\ &= f_1(x)f_2(x) + p(x)F[x] \tag{coset multiplication} \\ &= \phi(f_1(x)f_2(x)) \end{align}
$\phi$ is injective
\begin{align} & \phi(f_1(x)) = \phi(f_2(x)) \\ &\Rightarrow f_1(x) + p(x)F[x] = f_2(x) + p(x)F[x] \\ &\Rightarrow (f_1(x)-f_2(x)) + p(x)F[x] = p(x)F[x] \tag{coset subtraction} \\ &\Rightarrow f_1(x) - f_2(x) \in p(x)F[x] \\ &\Rightarrow \exists q(x) \in F[x], f_1(x) - f_2(x) = p(x)q(x) \end{align}
\begin{align} & f_1(x), f_2(x) \in F[x]/p(x) \\ &\Rightarrow (\deg(f_1) < \deg(p) \wedge \deg(f_2) < \deg(p)) \\ &\Rightarrow \deg(f_1 - f_2) \le \max(\deg(f_1), \deg(f_2)) < \deg(p) \\ &\Rightarrow \deg(pq) < \deg(p) \\ &\Rightarrow \deg(p) + \deg(q) < \deg(p) \\ &\Rightarrow \deg(q) < 0 \\ &\Rightarrow q = 0 \\ &\Rightarrow pq = f_1 - f_2 = 0 \\ &\Rightarrow f_1 = f_2 \end{align}
$\phi$ is surjective
Let $f(x) + p(x)F[x] \in F[x]/p(x)F[x]$. By polynomial division theorem, $f = pq + r$ and $\deg(r) < \deg(p) \Rightarrow r(x) \in F[x]/p(x)$.
\begin{align} & f(x) - r(x) = p(x)q(x) \in p(x)F[x] \\ &\Rightarrow (f(x) - r(x)) + p(x)F[x] = p(x)F[x] \\ &\Rightarrow f(x) + p(x)F[x] = r(x) + p(x)F[x] = \phi(r) \end{align}
Dependency for: None
Info:
- Depth: 7
- Number of transitive dependencies: 32
Transitive dependencies:
- /polynomials/commutative
- Group
- Coset
- For subset H of a group, a(bH) = (ab)H and (aH)b = a(Hb)
- Ring
- Polynomial
- Degree of product of polynomials
- Zero divisors of a polynomial
- Polynomial divisibility
- Degree of sum of polynomials
- Polynomials of a ring form a ring
- Ring isomorphism
- Integral Domain
- 0x = 0 = x0
- Ideal
- Field
- A field is an integral domain
- Polynomial division theorem
- Identity of a group is unique
- Subgroup
- Normal Subgroup
- Product of normal cosets is well-defined
- Factor group
- Inverse of a group element is unique
- gH = H iff g in H
- Product of ideal cosets is well-defined
- Quotient Ring
- Conditions for a subset to be a subgroup
- Condition for a subset to be a subgroup
- F[x]/p(x): A ring
- Conditions for a subset of a ring to be a subring
- Principal ideal