Condition for a subset to be a subgroup

Dependencies:

  1. Group
  2. Subgroup
  3. Conditions for a subset to be a subgroup

$H$ is a subgroup of $G$ iff $H \neq \phi$ and $(h_1, h_2 \in H \Rightarrow h_1 h_2^{-1} \in H)$.

Proof

We will prove both sides of the implication.

Part 1

Let $H$ be a group. Then $H \neq \phi$.

$h_1, h_2 \in H \Rightarrow h_1, h_2^{-1} \in H \Rightarrow h_1 h_2^{-1} \in H$.

Therefore, if $H$ is a subgroup of $G$, then $H \neq \phi$ and $(h_1, h_2 \in H \Rightarrow h_1 h_2^{-1} \in H)$.

Part 2

$H \neq \phi \Rightarrow \exists h \in H$.

In $(h_1, h_2 \in H \Rightarrow h_1 h_2^{-1} \in H)$:

By the above 3 properties, $H$ is a subgroup of $G$.

Dependency for:

  1. Second isomorphism theorem
  2. Alternating Group
  3. Correspondence theorem
  4. Homomorphic mapping of subgroup of domain is subgroup of codomain
  5. Conditions for a subset of a ring to be a subring
  6. Condition for being a subspace
  7. F[x]/p(x): A ring

Info:

Transitive dependencies:

  1. Group
  2. Identity of a group is unique
  3. Subgroup
  4. Inverse of a group element is unique
  5. Conditions for a subset to be a subgroup