Zero divisors of a polynomial
Dependencies:
A ring $R$ has no zero-divisors iff $R[x]$ has no zero divisors.
Proof
Since $R \subset R[x]$, $R[x]$ has no zero-divisors implies $R$ has no zero-divisors.
Suppose $R$ has no zero-divisors.
Let $a(x), b(x) \in R[x]$.
\begin{align} & a \neq 0 \wedge b \neq 0 \\ &\Rightarrow \deg(a) \ge 0 \wedge \deg(b) \ge 0 \\ &\Rightarrow \deg(a) + \deg(b) \ge 0 \\ &\Rightarrow \deg(ab) \ge 0 \tag{Since $R$ has no zero-divisors, $\deg(ab) = \deg(a) + \deg(b)$} \\ &\Rightarrow ab \neq 0 \end{align}
Therefore, $R[x]$ has no zero-divisors.
Dependency for:
Info:
- Depth: 4
- Number of transitive dependencies: 4