The ring F[x]/p(x) is a field iff p is irreducible
Dependencies:
- A field is an integral domain
- F[x]/p(x): A ring
- Degree of product of polynomials
- Polynomial GCD theorem
Let $F$ be a field. Let $p(x) \in F[x]-F$. Then $F[x]/p(x)$ is a field iff $p$ is irreducible.
Proof
Suppose $p$ is reducible. $\Rightarrow p = ab$, where $a, b \in F[x]-F$. Then $a \circ b = (ab)\%p = p\%p = 0$. This means $F[x]/p(x)$ has zero-divisors. Therefore, $F[x]/p(x)$ is not a field.
The unity of $F$ is also a unity of $F[x]/p(x)$.
Suppose $p$ is irreducible.
Let $a(x) \in F[x]/p(x)-\{0\} \Rightarrow 0 \le \deg(a) < \deg(p)$. Let $g = \gcd(a, p)$.
$g \mid a \Rightarrow \exists b \in F[x], a = gb$.
\begin{align} & a \neq 0 \\ &\Rightarrow (g \neq 0 \wedge b \neq 0) \\ &\Rightarrow (0 \le \deg(g) \wedge 0 \le \deg(b)) \\ &\Rightarrow 0 \le \deg(g) \le \deg(a) < \deg(p) \tag{$\deg(a) = \deg(g) + \deg(b)$} \end{align}
$g \mid p \Rightarrow \exists h \in F[x], p = gh$.
\[ p \neq 0 \Rightarrow (g \neq 0 \wedge h \neq 0) \]
\begin{align} & p \textrm{ is irreducible} \\ &\Rightarrow g \in F \vee h \in F \\ &\Rightarrow g \in F-\{0\} \vee h \in F-\{0\} \tag{$g \neq 0 \wedge h \neq 0$} \\ &\Rightarrow \deg(g) = 0 \vee \deg(h) = 0 \\ &\Rightarrow \deg(g) = 0 \vee \deg(g) = \deg(p) \tag{$\deg(p) = \deg(g) + \deg(h)$} \\ &\Rightarrow \deg(g) = 0 \tag{$\deg(g) \le \deg(a) < \deg(p)$} \\ &\Rightarrow g = 1 \tag{$g$ is monic} \end{align}
By the GCD theorem, $1 = \gcd(a, p) = sa + tp$ where $s, t \in F[x]$.
Let $s = kp + s\%p$. Then
\[ 1 = sa + tp = (s\%p + kp)a + tp = (s\%p)a + (ka+t)p \]
Therefore, we can assume without loss of generality that $s \in F[x]/p(x)$.
\[ (s \circ a) = (sa)\%p = (1 - tp)\%p = 1 \] Therefore, $a^{-1} = s$. Therefore, every element in $F[x]/p(x)-\{0\}$ has a multiplicative inverse. therefore, $F[x]/p(x)$ is a field.
Dependency for: None
Info:
- Depth: 7
- Number of transitive dependencies: 21
Transitive dependencies:
- /polynomials/commutative
- Group
- Ring
- Polynomial
- GCD of polynomials
- Degree of product of polynomials
- Zero divisors of a polynomial
- Polynomial divisibility
- Degree of sum of polynomials
- Integral Domain
- 0x = 0 = x0
- Field
- A field is an integral domain
- Polynomial division theorem
- Polynomial GCD theorem
- Identity of a group is unique
- Subgroup
- Inverse of a group element is unique
- Conditions for a subset to be a subgroup
- Condition for a subset to be a subgroup
- F[x]/p(x): A ring