Triangle inequality
Dependencies:
- Inner product space
- Cauchy-Schwarz Inequality
- /complex-numbers/real-part-less-than-abs
Let $V$ be an inner product space over $F$.
Then $\|x+y\| \le \|x\| + \|y\|$.
Proof
\begin{align} & (\|x\| + \|y\|)^2 - \|x + y\|^2 \\ &= (\|x\|^2 + \|y\|^2 + 2\|x\|\|y\|) - (\|x\|^2 + \|y\|^2 + \langle x, y \rangle + \langle y, x \rangle) \\ &= 2(\|x\|\|y\| - (\langle x, y \rangle + \overline{\langle x, y \rangle})/2) \\ &= 2(\|x\|\|y\| - \operatorname{Re}(\langle x, y \rangle)) \\ &\ge 2(\|x\|\|y\| - |\langle x, y \rangle|) \\ &\ge 0 \tag{by Cauchy-Schwarz inequality} \end{align}
Therefore, $\|x+y\|^2 \le (\|x\| + \|y\|)^2$. Since both $\|x+y\|$ and $\|x\| + \|y\|$ are non-negative, $\|x+y\| \le \|x\| + \|y\|$.
Dependency for: None
Info:
- Depth: 7
- Number of transitive dependencies: 10
Transitive dependencies:
- /complex-numbers/conjugation-is-homomorphic
- /complex-numbers/real-part-less-than-abs
- Group
- Ring
- Field
- Vector Space
- Inner product space
- Inner product is anti-linear in second argument
- Zero in inner product
- Cauchy-Schwarz Inequality