WMMS-sat and envious of everyone implies EFX-sat
Dependencies:
$\newcommand{\defeq}{:=}$ $\newcommand{\WMMS}{\mathrm{WMMS}}$ Consider a fair division instance $([n], [m], V, w)$ of indivisible items (where each agent $i$ has entitlement $w_i$). Suppose an allocation $A$ is WMMS-fair to agent $i$ and $i$ envies every other agent. Then $A$ is also EFX-fair to agent $i$ if one of these conditions hold:
- The items are goods to agent $i$.
- $v_i$ is additive and $w_i ≤ w_j$ for all $j \in [n] \setminus \{i\}$.
Proof
Suppose agent $i$ is not EFX-satisfied by $A$, i.e., she EFX-envies some agent $j$. Then $\exists S \subseteq A_i \cup A_j$ where either
- $S \subseteq A_j$, $v_i(S \mid A_i) > 0$, and $\displaystyle \frac{v_i(A_i)}{w_i} < \frac{v_i(A_j \setminus S)}{w_j}$.
- $S \subseteq A_i$, $v_i(S \mid A_i \setminus S) < 0$, and $\displaystyle \frac{v_i(A_i \setminus S)}{w_i} < \frac{v_i(A_j)}{w_j}$.
If all items are goods, case 2 doesn't occur.
Case 1: $S \subseteq A_j$
Let $B_i \defeq A_i \cup S$, $B_j \defeq A_j \setminus S$, and $B_k \defeq A_k$ for all $k \in [n] \setminus \{i, j\}$. Then \[ \frac{v_i(B_i)}{w_i} = \frac{v_i(A_i) + v_i(S \mid A_i)}{w_i} > \frac{v_i(A_i)}{w_i}, \] \[ \frac{v_i(B_j)}{w_j} = \frac{v_i(A_j \setminus S)}{w_j} > \frac{v_i(A_i)}{w_i}, \] \[ \frac{v_i(B_k)}{w_k} = \frac{v_i(A_k)}{w_k} > \frac{v_i(A_i)}{w_i}. \] Hence, \[ \min_{k=1}^n \frac{v_i(B_k)}{w_k} > \frac{v_i(A_i)}{w_i} ≥ \frac{\WMMS_i}{w_i}, \] which is a contradiction.
Case 2: $S \subseteq A_i$
Let $v_i$ be additive and $w_i ≤ w_j$. Let $B_i \defeq A_i \setminus S$, $B_j \defeq A_j \cup S$, and $B_k \defeq A_k$ for all $k \in [n] \setminus \{i, j\}$. Then \[ \frac{v_i(B_i)}{w_i} = \frac{v_i(A_i) - v_i(S)}{w_i} > \frac{v_i(A_i)}{w_i}, \] \[ \frac{v_i(B_j)}{w_j} = \frac{v_i(A_j) + v_i(S)}{w_j} > \frac{v_i(A_i \setminus S)}{w_i} - \frac{d_i(S)}{w_j} ≥ \frac{v_i(A_i)}{w_i}, \] \[ \frac{v_i(B_k)}{w_k} = \frac{v_i(A_k)}{w_k} > \frac{v_i(A_i)}{w_i}. \] Hence, \[ \min_{k=1}^n \frac{v_i(B_k)}{w_k} > \frac{v_i(A_i)}{w_i} ≥ \frac{\WMMS_i}{w_i}, \] which is a contradiction.
Dependency for:
Info:
- Depth: 6
- Number of transitive dependencies: 10
Transitive dependencies:
- /sets-and-relations/countable-set
- /analysis/sup-inf
- σ-algebra
- Set function
- Fair division
- Envy-freeness
- Maximin share of a set function
- Maximin share allocations
- Submodular function
- EFX