WMMS-sat and envious of everyone implies EFX-sat

Dependencies:

  1. Fair division
  2. Maximin share allocations
  3. EFX

Consider a fair division instance $([n], [m], V, w)$ of indivisible items (where each agent $i$ has entitlement $w_i$). Suppose an allocation $A$ is WMMS-fair to agent $i$ and $i$ envies every other agent. Then $A$ is also EFX-fair to agent $i$ if one of these conditions hold:

  1. The items are goods to agent $i$.
  2. $v_i$ is additive and $w_i ≤ w_j$ for all $j \in [n] \setminus \{i\}$.

Proof

Suppose agent $i$ is not EFX-satisfied by $A$, i.e., she EFX-envies some agent $j$. Then $\exists S \subseteq A_i \cup A_j$ where either

  1. $S \subseteq A_j$, $v_i(S \mid A_i) > 0$, and $\displaystyle \frac{v_i(A_i)}{w_i} < \frac{v_i(A_j \setminus S)}{w_j}$.
  2. $S \subseteq A_i$, $v_i(S \mid A_i \setminus S) < 0$, and $\displaystyle \frac{v_i(A_i \setminus S)}{w_i} < \frac{v_i(A_j)}{w_j}$.

If all items are goods, case 2 doesn't occur.

Case 1: $S \subseteq A_j$

Let $B_i \defeq A_i \cup S$, $B_j \defeq A_j \setminus S$, and $B_k \defeq A_k$ for all $k \in [n] \setminus \{i, j\}$. Then \[ \frac{v_i(B_i)}{w_i} = \frac{v_i(A_i) + v_i(S \mid A_i)}{w_i} > \frac{v_i(A_i)}{w_i}, \] \[ \frac{v_i(B_j)}{w_j} = \frac{v_i(A_j \setminus S)}{w_j} > \frac{v_i(A_i)}{w_i}, \] \[ \frac{v_i(B_k)}{w_k} = \frac{v_i(A_k)}{w_k} > \frac{v_i(A_i)}{w_i}. \] Hence, \[ \min_{k=1}^n \frac{v_i(B_k)}{w_k} > \frac{v_i(A_i)}{w_i} ≥ \frac{\WMMS_i}{w_i}, \] which is a contradiction.

Case 2: $S \subseteq A_i$

Let $v_i$ be additive and $w_i ≤ w_j$. Let $B_i \defeq A_i \setminus S$, $B_j \defeq A_j \cup S$, and $B_k \defeq A_k$ for all $k \in [n] \setminus \{i, j\}$. Then \[ \frac{v_i(B_i)}{w_i} = \frac{v_i(A_i) - v_i(S)}{w_i} > \frac{v_i(A_i)}{w_i}, \] \[ \frac{v_i(B_j)}{w_j} = \frac{v_i(A_j) + v_i(S)}{w_j} > \frac{v_i(A_i \setminus S)}{w_i} - \frac{d_i(S)}{w_j} ≥ \frac{v_i(A_i)}{w_i}, \] \[ \frac{v_i(B_k)}{w_k} = \frac{v_i(A_k)}{w_k} > \frac{v_i(A_i)}{w_i}. \] Hence, \[ \min_{k=1}^n \frac{v_i(B_k)}{w_k} > \frac{v_i(A_i)}{w_i} ≥ \frac{\WMMS_i}{w_i}, \] which is a contradiction.

Dependency for:

  1. MMS implies EEFX
  2. WMMS implies EFX for two agents

Info:

Transitive dependencies:

  1. /sets-and-relations/countable-set
  2. /analysis/sup-inf
  3. σ-algebra
  4. Set function
  5. Fair division
  6. Envy-freeness
  7. Maximin share of a set function
  8. Maximin share allocations
  9. Submodular function
  10. EFX