MMS implies EEFX
Dependencies:
- Fair division
- Maximin share allocations
- EFX
- Epistemic fairness
- WMMS-sat and envious of everyone implies EFX-sat
$\newcommand{\defeq}{:=}$ $\newcommand{\WMMS}{\mathrm{WMMS}}$ Consider a fair division instance $([n], [m], V, w)$ of indivisible goods (where each agent $i$ has entitlement $w_i$). If an allocation $A$ is WMMS-fair to agent $i$, then it is also epistemic-EFX-fair to $i$.
Proof
For any allocation $X$, let $E_X \defeq \{t \in [n] \setminus \{i\}: i \textrm{ envies } t \textrm{ in } X\}$, $S_X \defeq \{t \in [n] \setminus \{i\}: i \textrm{ EFX-envies } t \textrm{ in } X\}$, $W_X \defeq \sum_{t \in S_X} |X_t|$, and $\phi(X) \defeq (-|E_X|, W_X)$.
Lemma 1: Let $X$ be an allocation where $|E_X| ≤ n-2$ and $S_X \neq \emptyset$. Then $\exists$ allocation $Y$ such that $Y_i = X_i$ and $\phi(Y) < \phi(X)$ (tuples are compared lexicographically).
Proof. Let $j \in S_X$ and $k \in [n] \setminus \{i\} \setminus E_X$. Since $i$ EFX-envies $j$, $\exists S \subseteq X_j$ such that $v_i(S \mid X_i) > 0$ and \[ \frac{v_1(X_1)}{w_1} < \frac{v_1(X_j \setminus S)}{w_j}. \] Let $Y_k \defeq X_k \cup S$, $Y_j \defeq X_j \setminus S$, and $Y_t \defeq X_t$ for all $t \in [n] \setminus \{j, k\}$.
Then $i$ envies $j$ in $Y$. Hence, $E_X \subseteq E_Y$. If $k \in E_Y$, then $|E_Y| > |E_X|$, so $\phi(Y) < \phi(X)$. If $k \not\in E_Y$, then $W_Y < W_X$, so $\phi(Y) < \phi(X)$. □
Set $X = A$. As long as $|E_X| < n-1$ and $S_X \neq \emptyset$, keep modifying $X$ as per Lemma 1. This process will eventually end, since $\phi(X)$ keeps reducing, and there are a finite number of different values $\phi(X)$ can take. Let $B$ be the final allocation thus obtained. Then $B_i = A_i$, and $|E_B| = n-1$ or $S_B = \emptyset$.
By mms-and-all-envy.html, $|E_B| = n-1$ implies $S_B = \emptyset$. Hence, $B$ is agent $i$'s EEFX-certificate for $A$.
Dependency for: None
Info:
- Depth: 7
- Number of transitive dependencies: 12
Transitive dependencies:
- /sets-and-relations/countable-set
- /analysis/sup-inf
- σ-algebra
- Set function
- Fair division
- Envy-freeness
- Epistemic fairness
- Maximin share of a set function
- Maximin share allocations
- Submodular function
- EFX
- WMMS-sat and envious of everyone implies EFX-sat