EFX
Dependencies:
$\newcommand{\defeq}{:=}$ (Original work by Eklavya Sharma and Aniket Murhekar, except where cited otherwise.)
Let $\max(\emptyset) \defeq -\infty$ and $\min(\emptyset) \defeq \infty$.
Let $([n], M, V, w)$ be a fair division instance for indivisible items (where each agent $i$ has entitlement $w_i$). An allocation $A$ is said to be EFX-fair to agent $i$ iff for every $j \in [n] \setminus \{i\}$, either $i$ doesn't envy $j$, or \[ \frac{v_i(A_i)}{w_i} ≥ \frac{\max(\{v_i(A_j \setminus S) \mid S \subseteq A_j \textrm{ and } v_i(S \mid A_i) > 0\})}{w_j} \] and \[ \frac{\min(\{v_i(A_i \setminus S) \mid S \subseteq A_i \textrm{ and } v_i(S \mid A_i \setminus S) < 0 \})}{w_i} ≥ \frac{v_i(A_j)}{w_j}. \] If the above conditions are not satisfied for some $j \in [n] \setminus \{i\}$, we say that $i$ EFX-envies $j$.
EFX was first defined in https://doi.org/10.1145/3355902 (Definition 4.5 in Section 4.2) for goods with additive valuations. Slightly different definitions exist in literature, where one or both of the marginal values $v_i(S \mid A_i)$ and $d_i(S \mid A_i \setminus S)$ are non-negative instead of positive.
It is trivial to see that EF implies EFX.
Equivalent definitions in special cases:
- When all items are goods to agent $i$ and $v_i(g \mid R) > 0$ for any $g \in M$ and $R \subseteq M \setminus \{g\}$, then $A$ is EFX-fair to agent $i$ iff for every $j \in [n] \setminus \{i\}$, \[ \frac{v_i(A_i)}{w_i} ≥ \frac{\max(\{v_i(A_j \setminus \{g\}) \mid g \in A_j\})}{w_j}. \]
- When all items are chores to agent $i$ and $d_i(c \mid R) > 0$ for any $c \in M$ and $R \subseteq M \setminus \{c\}$, then $A$ is EFX-fair to agent $i$ iff for every $j \in [n] \setminus \{i\}$, \[ \frac{\max(\{d_i(A_i \setminus \{c\}) \mid c \in A_i\})}{w_i} ≤ \frac{d_i(A_j)}{w_j}. \]
- When all items are goods to agent $i$ and $v_i$ is submodular, $A$ is EFX-fair to agent $i$ iff for every $j \in [n] \setminus \{i\}$, \[ \frac{v_i(A_i)}{w_i} ≥ \frac{\max(\{v_i(A_j \setminus \{g\}) \mid g \in A_j \textrm{ and } v_i(g \mid A_i) > 0\})}{w_j}. \]
- When all items are chores to agent $i$ and $d_i$ is supermodular, $A$ is EFX-fair to agent $i$ iff for every $j \in [n] \setminus \{i\}$, \[ \frac{\max(\{d_i(A_i \setminus \{c\}) \mid c \in A_i \textrm{ and } d_i(c \mid A_i \setminus \{c\}) > 0\})}{w_i} ≤ \frac{d_i(A_j)}{w_j}. \]
Proof of equivalence of definitions of EFX
Suppose all items are goods to $i$ and either $v_i$ is submodular or $v_i(g \mid R) > 0$ for all $g \in M$ and $R \subseteq M \setminus \{g\}$. Let $A$ be an allocation and $S \subseteq A_j$ such that $v_i(S \mid A_i) > 0$. Let $S \defeq \{g_1, \ldots, g_k\}$. Then \[ 0 < v_i(S \mid A_i) = \sum_{t=1}^k v_i(g_t \mid A_i \cup \{g_1, \ldots, g_{t-1}\}). \] Hence, $0 < v_i(g \mid A_i) ≤ v_i(S \mid A_i)$ for all $g \in S$. Hence, we can assume without loss of generality that $|S| = 1$ in the definition of EFX.
Suppose all items are chores to $i$ and either $d_i$ is supermodular or $d_i(c \mid R) > 0$ for all $c \in M$ and $R \subseteq M \setminus \{c\}$. Let $A$ be an allocation and $S \subseteq A_i$ such that $d_i(S \mid A_i \setminus S) > 0$. Let $S \defeq \{c_1, \ldots, c_k\}$. For $t \in \{0, \ldots, k\}$, let $S_t \defeq \{c_1, \ldots, c_t\}$. Then \begin{align} 0 &< d_i(S \mid A_i \setminus S) = d_i(A_i \setminus S_0) - d_i(A_i \setminus S_k) \\ &= \sum_{t=1}^k (d_i(A_i \setminus S_{t-1}) - d_i(A_i \setminus S_t)) \\ &= \sum_{t=1}^k d_i(c_t \mid A_i \setminus S_t) \end{align} Hence, $0 < d_i(c \mid A_i \setminus \{c\}) ≤ d_i(S \mid A_i \setminus S)$ for some $c \in S$. Hence, we can assume without loss of generality that $|S| = 1$ in the definition of EFX.
Dependency for:
- MMS implies MXS
- MXS implies EF1 for n=2
- EFX implies PROPm
- MMS implies EEFX
- WMMS implies EFX for two agents
- An MXS allocation is also PROP1
- EFX implies EF1
- WMMS-sat and envious of everyone implies EFX-sat
- Additive chores and binary marginals
- PROPm doesn't exist for mixed manna
- PROP1+M1S allocation doesn't exist
- EFX doesn't imply MMS
- MXS doesn't imply PROP1 for chores
- Share vs envy for identical valuations (chores)
- EF1 doesn't imply PROPx or MXS
- MXS doesn't imply PROPx or EFX
Info:
- Depth: 5
- Number of transitive dependencies: 6
Transitive dependencies:
- /sets-and-relations/countable-set
- σ-algebra
- Set function
- Fair division
- Envy-freeness
- Submodular function