EFX

Dependencies:

  1. Fair division
  2. Envy-freeness
  3. Submodular function

(Original work by Eklavya Sharma and Aniket Murhekar, except where cited otherwise.)

Let $\max(\emptyset) \defeq -\infty$ and $\min(\emptyset) \defeq \infty$.

Let $([n], M, V, w)$ be a fair division instance for indivisible items (where each agent $i$ has entitlement $w_i$). An allocation $A$ is said to be EFX-fair to agent $i$ iff for every $j \in [n] \setminus \{i\}$, either $i$ doesn't envy $j$, or \[ \frac{v_i(A_i)}{w_i} ≥ \frac{\max(\{v_i(A_j \setminus S) \mid S \subseteq A_j \textrm{ and } v_i(S \mid A_i) > 0\})}{w_j} \] and \[ \frac{\min(\{v_i(A_i \setminus S) \mid S \subseteq A_i \textrm{ and } v_i(S \mid A_i \setminus S) < 0 \})}{w_i} ≥ \frac{v_i(A_j)}{w_j}. \] If the above conditions are not satisfied for some $j \in [n] \setminus \{i\}$, we say that $i$ EFX-envies $j$.

EFX was first defined in https://doi.org/10.1145/3355902 (Definition 4.5 in Section 4.2) for goods with additive valuations. Slightly different definitions exist in literature, where one or both of the marginal values $v_i(S \mid A_i)$ and $d_i(S \mid A_i \setminus S)$ are non-negative instead of positive.

It is trivial to see that EF implies EFX.

Equivalent definitions in special cases:

  1. When all items are goods to agent $i$ and $v_i(g \mid R) > 0$ for any $g \in M$ and $R \subseteq M \setminus \{g\}$, then $A$ is EFX-fair to agent $i$ iff for every $j \in [n] \setminus \{i\}$, \[ \frac{v_i(A_i)}{w_i} ≥ \frac{\max(\{v_i(A_j \setminus \{g\}) \mid g \in A_j\})}{w_j}. \]
  2. When all items are chores to agent $i$ and $d_i(c \mid R) > 0$ for any $c \in M$ and $R \subseteq M \setminus \{c\}$, then $A$ is EFX-fair to agent $i$ iff for every $j \in [n] \setminus \{i\}$, \[ \frac{\max(\{d_i(A_i \setminus \{c\}) \mid c \in A_i\})}{w_i} ≤ \frac{d_i(A_j)}{w_j}. \]
  3. When all items are goods to agent $i$ and $v_i$ is submodular, $A$ is EFX-fair to agent $i$ iff for every $j \in [n] \setminus \{i\}$, \[ \frac{v_i(A_i)}{w_i} ≥ \frac{\max(\{v_i(A_j \setminus \{g\}) \mid g \in A_j \textrm{ and } v_i(g \mid A_i) > 0\})}{w_j}. \]
  4. When all items are chores to agent $i$ and $d_i$ is supermodular, $A$ is EFX-fair to agent $i$ iff for every $j \in [n] \setminus \{i\}$, \[ \frac{\max(\{d_i(A_i \setminus \{c\}) \mid c \in A_i \textrm{ and } d_i(c \mid A_i \setminus \{c\}) > 0\})}{w_i} ≤ \frac{d_i(A_j)}{w_j}. \]

Proof of equivalence of definitions of EFX

Suppose all items are goods to $i$ and either $v_i$ is submodular or $v_i(g \mid R) > 0$ for all $g \in M$ and $R \subseteq M \setminus \{g\}$. Let $A$ be an allocation and $S \subseteq A_j$ such that $v_i(S \mid A_i) > 0$. Let $S \defeq \{g_1, \ldots, g_k\}$. Then \[ 0 < v_i(S \mid A_i) = \sum_{t=1}^k v_i(g_t \mid A_i \cup \{g_1, \ldots, g_{t-1}\}). \] Hence, $0 < v_i(g \mid A_i) ≤ v_i(S \mid A_i)$ for all $g \in S$. Hence, we can assume without loss of generality that $|S| = 1$ in the definition of EFX.

Suppose all items are chores to $i$ and either $d_i$ is supermodular or $d_i(c \mid R) > 0$ for all $c \in M$ and $R \subseteq M \setminus \{c\}$. Let $A$ be an allocation and $S \subseteq A_i$ such that $d_i(S \mid A_i \setminus S) > 0$. Let $S \defeq \{c_1, \ldots, c_k\}$. For $t \in \{0, \ldots, k\}$, let $S_t \defeq \{c_1, \ldots, c_t\}$. Then \begin{align} 0 &< d_i(S \mid A_i \setminus S) = d_i(A_i \setminus S_0) - d_i(A_i \setminus S_k) \\ &= \sum_{t=1}^k (d_i(A_i \setminus S_{t-1}) - d_i(A_i \setminus S_t)) \\ &= \sum_{t=1}^k d_i(c_t \mid A_i \setminus S_t) \end{align} Hence, $0 < d_i(c \mid A_i \setminus \{c\}) ≤ d_i(S \mid A_i \setminus S)$ for some $c \in S$. Hence, we can assume without loss of generality that $|S| = 1$ in the definition of EFX.

Dependency for:

  1. MMS implies MXS
  2. MXS implies EF1 for n=2
  3. EFX implies PROPm
  4. MMS implies EEFX
  5. WMMS implies EFX for two agents
  6. An MXS allocation is also PROP1
  7. EFX implies EF1
  8. WMMS-sat and envious of everyone implies EFX-sat
  9. Additive chores and binary marginals
  10. PROPm doesn't exist for mixed manna
  11. PROP1+M1S allocation doesn't exist
  12. EFX doesn't imply MMS
  13. MXS doesn't imply PROP1 for chores
  14. Share vs envy for identical valuations (chores)
  15. EF1 doesn't imply PROPx or MXS
  16. MXS doesn't imply PROPx or EFX

Info:

Transitive dependencies:

  1. /sets-and-relations/countable-set
  2. σ-algebra
  3. Set function
  4. Fair division
  5. Envy-freeness
  6. Submodular function