Vertex implies extreme point
Dependencies:
Let $V$ be an inner-product space over $\mathbb{R}$. $S \subseteq V$ be a convex set. If $x$ is a vertex of $S$, then $x$ is also an extreme point of $S$.
Proof
We will prove the contrapositive, i.e., we will assume that $x$ is non-extreme and prove that $x$ is not a vertex of $S$.
Since $x$ is non-extreme, $\exists z_1 \in S$, $\exists z_2 \in S$, $\exists \alpha \in (0, 1)$, such that $z_1 \neq z_2$ and $x = (1-\alpha)z_1 + \alpha z_2$. Hence, $\langle c, x \rangle = (1-\alpha) \langle c, z_1 \rangle + \alpha \langle c, z_2 \rangle$ (by linearity of inner product).
Assume $x$ is a vertex of $S$. Then $\exists c \in V$ such that $\langle c, x \rangle < \langle c, y \rangle$ $\forall y \in S - \{x\}$. Hence, $\langle c, x \rangle < \langle c, z_1 \rangle$ and $\langle c, x \rangle < \langle c, z_2 \rangle$. Thus, $\langle c, x \rangle < (1-\alpha) \langle c, z_1 \rangle + \alpha \langle c, z_2 \rangle$, which is a contradiction. Hence, $x$ is not a vertex of $S$.
Dependency for:
Info:
- Depth: 7
- Number of transitive dependencies: 9