Vertex of a set

Dependencies:

  1. Inner product space

Let $V$ be an inner-product space over $\mathbb{R}$. Let $S \subseteq V$. Let $x \in S$. $x$ is called a vertex of $S$ iff $\exists c \in V$ such that $\langle c, x \rangle < \langle c , y \rangle$ $\forall y \in S - \{x\}$.

Dependency for:

  1. Vertex implies extreme point
  2. BFS iff vertex iff extreme point
  3. BFS is vertex

Info:

Transitive dependencies:

  1. Group
  2. Ring
  3. Field
  4. Vector Space
  5. Inner product space