Vertex of a set
Dependencies:
Let $V$ be an inner-product space over $\mathbb{R}$. Let $S \subseteq V$. Let $x \in S$. $x$ is called a vertex of $S$ iff $\exists c \in V$ such that $\langle c, x \rangle < \langle c , y \rangle$ $\forall y \in S - \{x\}$.
Dependency for:
Info:
- Depth: 5
- Number of transitive dependencies: 5