Convex set
Dependencies:
Let $V$ be a vector space over $\mathbb{R}$. Let $S \subseteq V$. $S$ is said to be convex iff \[ \forall x \in S, \forall y \in S, \forall t \in (0, 1), (1-t)x + ty \in S. \]
Equivalently, $S$ is convex iff for each finite-sized subset $X$ of $S$, all convex combinations of $X$ lie in $S$.
Trivial examples of convex sets are $V$ and $\{0\}$.
Proof of equivalence of definitions
Let $S$ be a set such that for any finite subset $X \subseteq S$, all convex combinations of $X$ lie in $S$. Let $x \in S$ and $y \in S$. Then for any $t \in [0, 1]$, $(1-t)x + ty$ is a convex combination of $\{x, y\}$, so it lies in $S$.
Let $S$ be a set such that \[ \forall x \in S, \forall y \in S, \forall t \in (0, 1), (1-t)x + ty \in S. \] Let $X = \{x_1, x_2, \ldots, x_n\}$ be a subset of $S$. Let $\lambda_1, \lambda_2, \ldots, \lambda_n$ be non-negative real numbers such that $\sum_{i=1}^n \lambda_i = 1$. We will show that $\sum_{i=1}^n \lambda_ix_i \in S$.
Assume without loss of generality that $\lambda_1 \ge \lambda_2 \ge \ldots \ge \lambda_n$. For any $1 \le k \le n$, let \[ y_k = \frac{\sum_{i=1}^k \lambda_ix_i}{\sum_{i=1}^k \lambda_i}. \] We will show using induction that $y_k \in S$ for all $1 \le k \le n$. This will complete the proof, since $y_n = \sum_{i=1}^n \lambda_ix_i$.
Let $P(k)$ be the claim that $y_k \in S$. $y_1 = x_1 \in S$, so $P(1)$ is true. Now assume $P(k)$ is true for any $1 \le k \le n-1$. We will show that $P(k+1)$ is also true.
Let $\alpha = \lambda_{k+1}/\sum_{i=1}^{k+1} \lambda_i$. Then $y_{k+1} = (1-\alpha)y_k + \alpha x_{k+1}$. Since $y_k \in S$ and $x_{k+1} \in S$ and $\alpha \in [0, 1]$, we get that $y_{k+1} \in S$.
Dependency for:
- Convex function
- Direction of a convex set and Recession cone
- Extreme point of a convex set
- Convex hull of a finite number of points in Euclidean space is bounded
- Condition for a point to be extreme
- Extreme direction of convex cone as extreme point of intersection with hyperplane
- Extreme directions of a convex set
- Double direction of a convex set and double recession space
- Polyhedral set and polyhedral cone
Info:
- Depth: 5
- Number of transitive dependencies: 5