p(x)F[x] = F[x] iff p is a non-zero constant
Dependencies:
Let $F$ be a field. $p(x)F[x] = F[x]$ iff $p \in F-\{0\}$.
Proof
$p(x)F[x] \subseteq F[x]$.
Let $p \in F-\{0\}$ and $f(x) \in F[x]$. Then $f(x) = p(p^{-1}f(x)) \in pF[x] \Rightarrow F[x] \subseteq pF[x]$. Therefore, $pF[x] = F[x]$.
If $p(x) = 0$, $p(x)F[x] = \{0\} \neq F[x]$.
Let $p(x) \in F[x] - F \Rightarrow \deg(p) \ge 1$. Since $F$ has no zero-divisors, all non-zero elements in $p(x)F[x]$ have degree at least 1. Therefore, $1 \not\in p(x)F[x]$ but $1 \in F[x]$. Therefore, $p(x)F[x] \neq F[x]$.
Dependency for:
Info:
- Depth: 4
- Number of transitive dependencies: 9