Factor theorem
Dependencies:
Let $F$ be a field. Let $p(x) \in F[x]$ and $a \in F$.
$p(a) = 0 \iff (x-a) \mid p(x)$
Proof of 'only if' part
Let $p(a) = 0$.
By the division theorem, there is a unique $(q, r)$ such that $p(x) = (x-a)q(x) + r(x)$ such that $\deg(r) < \deg(x-a) = 1$.
$\deg(r) < 1 \Rightarrow r \in F$. Therefore, $p(x) = (x-a)q(x) + r$.
$ 0 = p(a) = (a-a)q(a) + r = r$.
Therefore, $p(x) = (x-a)q(x) \Rightarrow (x-a) \mid \mid p(x)$.
Proof of 'if' part
$(x-a) \mid p(x) \Rightarrow p(x) = (x-a)q(x)$ for some $q(x) \in F[x]$.
Therefore, $p(a) = (a-a)q(a) = 0$.
Dependency for:
Info:
- Depth: 6
- Number of transitive dependencies: 11