Bin packing: config LP of predecessor

Dependencies:

  1. Bin packing: configuration LP
  2. Bin packing: predecessor of an input instance

Let $I$ and $J$ be bin packing instances such that $I \preceq J$.

Then $\lin(I) \le \lin(J)$.

($\lin$ is a well-defined function, since optimal objective value of the configuration linear program doesn't depend on how items are grouped into types).

Proof for subset

Let $I \subseteq J$. Let $\Ccal$ be the configurations of $I$ and $\Scal$ be the configurations of $J$. Define $\sigma(S) \defeq S \cap I$. Define $\sigma^{-1}(C) \defeq \{S \in \Scal: \sigma(S) = C\}$.

The configuration LP of $J$ is: \[ \min_{x \in \mathbb{R}^{|\Scal|}} \Sum(x) \quad \textrm{where}\quad \sum_{S \ni i} x_S \ge 1 \quad \forall i \in J. \] Let $x$ be an optimal solution to $\LP(J)$. Let $y_C \defeq \sum_{S \in \sigma^{-1}(C)} x_S$. Then $\Sum(y) = \Sum(x)$ and for each $i \in I$, we get \[ \sum_{C \ni i} y_C = \sum_{C \in \Ccal} \One(i \in C)\sum{S \in \sigma^{-1}(C)} x_S = \sum_{S \in \Scal} \One(i \in S)x_S \ge 1. \] Therefore, $y$ is feasible for $\LP(I)$. Hence, $\opt(\LP(I)) \le \Sum(y) = \Sum(x) = \opt(\LP(J))$.

Proof for $|I| = |J|$

Let $\sigma: I \mapsto J$ be a bijection from $I$ to $J$ such that $i \le \sigma(i)$. $\sigma$ exists because $I \preceq J$ and $|I| = |J|$. Let $\Ccal$ be the configurations of $I$ and $\Scal$ be the configurations of $J$. Define $\sigma: 2^I \mapsto 2^J$ as $\sigma(C) \defeq \{\sigma(i): i \in C\}$. Define $\sigma^{-1}(S) \defeq \{\sigma^{-1}(j): j \in S\}$. If $S$ is a configuration, then $\sigma^{-1}(S)$ is also a configuration.

The configuration LP of $J$ is: \[ \min_{x \in \mathbb{R}^{|\Scal|}} \Sum(x) \quad \textrm{where}\quad \sum_{S \ni i} x_S \ge 1 \quad \forall i \in J. \] Let $x$ be an optimal solution to $\LP(J)$. Define $y$ as \[ y_C \defeq \begin{cases} x_{\sigma(C)} & \sigma(C) \in \Scal \\ 0 & \sigma(C) \not\in \Scal \end{cases}. \] \[ \Sum(y) = \sum_{C \in \Ccal} y_C = \sum_{S \in \Scal} x_S = \Sum(x). \] For each $i \in I$, we get \[ \sum_{C \in \Ccal} \One(i \in C)y_C = \sum_{S \in \Scal} \One(i \in S)x_S \ge 1. \] Therefore, $y$ is feasible for $\LP(I)$. Hence, $\opt(\LP(I)) \le \Sum(y) = \Sum(x) = \opt(\LP(J))$.

General proof

The proof for the general case can be obtained by combining the above two special cases ($I \subseteq J$ and $|I| = |J|$).

Dependency for:

  1. 1BP: Karmarkar-Karp algorithm (broken)

Info:

Transitive dependencies:

  1. Bin packing and Knapsack
  2. Bin packing: configuration LP
  3. Bin packing: predecessor of an input instance