Bin packing: density-restricted config LP

Dependencies:

  1. Bin packing and Knapsack
  2. Bin packing: configuration LP

Let $I$ be a bin packing instance with $n$ items such that there are $m$ types of items, and all items of the same type are identical. Let $b_i$ be the number of items of type $i$. Let $A$ be the configuration matrix of $I$.

Let $g: I \mapsto \mathbb{R}_{\ge 0}$ be a function. For a set $X$ of items, define $g(X) = \sum_{i \in X} g(i)$. Let $\lambda$ be a positive real number. Then the density-restricted configuration LP of $I$ parametrized by $g$ and $\lambda$ is defined as

\[ \min\left\{ \sum_{C \in \mathcal{C}} x_C + \lambda \sum_{i=1}^m g(i)y_i: Ax + y \ge b \wedge x \ge 0 \wedge y \ge 0 \right\} \]

Dependency for:

  1. Bin packing: removing density restriction from config LP
  2. BP: α(1+ε)-approx solution to density-restricted config LP using α-approx algorithm for density-restricted knapsack
  3. 2D BP: APTAS for config LP

Info:

Transitive dependencies:

  1. Bin packing and Knapsack
  2. Bin packing: configuration LP