1BP: FPTAS for config LP

Dependencies:

  1. Bin packing and Knapsack
  2. Bin packing: configuration LP
  3. BP: α(1+ε)-approx solution to config LP using α-approx algorithm for knapsack
  4. FPTAS for 1D knapsack

Let $I$ be a 1BP instance containing $n$ items. Then we can obtain a feasible solution $x$ to the configuration LP of $I$, such that $\Sum(x) \le (1+\eps)\lin(I)$. Moreover, we can do this in time \[ O\left(\frac{n^5}{\eps^4}\log\left(\frac{n}{\eps}\right)^3\right). \]

Proof follows directly from the dependencies.

Dependency for:

  1. 1BP: Karmarkar-Karp algorithm (broken)

Info:

Transitive dependencies:

  1. /optimization/lin-func-is-max-at-extreme-point-of-polytope
  2. /bounds/upper-exp-bound
  3. Bin packing and Knapsack
  4. Pseudo-polynomial time algorithm for 1D knapsack
  5. FPTAS for 1D knapsack
  6. Bin packing: configuration LP
  7. Group
  8. Ring
  9. Semiring
  10. Matrix
  11. Bound on log
  12. Approximation algorithm for covering LPs
  13. BP: α(1+ε)-approx solution to config LP using α-approx algorithm for knapsack