1BP: FPTAS for config LP
Dependencies:
- Bin packing and Knapsack
- Bin packing: configuration LP
- BP: α(1+ε)-approx solution to config LP using α-approx algorithm for knapsack
- FPTAS for 1D knapsack
$\newcommand{\eps}{\varepsilon}$ $\newcommand{\Otild}{\widetilde{O}}$ $\newcommand{\Sum}{\operatorname{sum}}$ $\newcommand{\lin}{\operatorname{lin}}$ Let $I$ be a 1BP instance containing $n$ items. Then we can obtain a feasible solution $x$ to the configuration LP of $I$, such that $\Sum(x) \le (1+\eps)\lin(I)$. Moreover, we can do this in time \[ O\left(\frac{n^5}{\eps^4}\log\left(\frac{n}{\eps}\right)^3\right). \]
Proof follows directly from the dependencies.
Dependency for:
Info:
- Depth: 5
- Number of transitive dependencies: 13
Transitive dependencies:
- /optimization/lin-func-is-max-at-extreme-point-of-polytope
- /bounds/upper-exp-bound
- Bin packing and Knapsack
- Pseudo-polynomial time algorithm for 1D knapsack
- FPTAS for 1D knapsack
- Bin packing: configuration LP
- Group
- Ring
- Semiring
- Matrix
- Bound on log
- Approximation algorithm for covering LPs
- BP: α(1+ε)-approx solution to config LP using α-approx algorithm for knapsack